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Abstract: This paper presents a 32-channel compressive gammachirp filterbank chip based on
hybrid stochastic/binary computation for area/power-efficient auditory signal processing. The
gammachirp filter well expresses the performance of human auditory peripheral mechanism
and can be used for hearing assisting devices and noise robust speech recognition systems. The
stochastic gammachirp filters are designed using cascaded digital IIR filters, leading to area-
efficient hardware thanks to a simple logic-gate implementation of multiplication. However,
the signal variability due to random number sequences used in stochastic computation induces
unwanted frequency components at each IIR filter, causing large noise signals at the output of
the gammachirp filters. To reduce the noise signals, a fixed random-number-generation (FRNG)
technique is introduced that provides the same random number sequence at every operation
as opposed to different random number sequences used in a conventional stochastic filter. The
FRNG technique mitigates the noise signals and hence increases the filter gains with short
lengths of stochastic bit streams. In addition, gain-compression characteristics depending on
input acoustic pressures known as human auditory effects are naturally realized by changing
the lengths of the stochastic bit streams. The proposed filterbank chip is fabricated using
Taiwan Semiconductor Manufacturing Company (TSMC) 65 nm CMOS process that achieves
715-2,585 μW with the chip area of 3.2 mm2, leading to the best power-area product per
channel in comparison with conventional analog auditory filterbanks.

Key Words: stochastic logic, gammachirp filter, auditory filter, IIR filter, digital circuit
implementation
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1. Introduction
Brainware (brain-inspired) computing and LSI (BLSI) implementations have recently been studied
for image recognitions, leading to a significant cognition capability compared to a traditional com-
putation based approach [1, 2]. In brainware auditory signal processing, gammatone filters [3, 4] and
gammachirp filters [5–8] are promising techniques for advanced speech communication systems as
these filters exhibit similar responses to the impulse responses of basilar membrane. There are several
applications, such as cochlear implants [9–12] and noise robust speech recognitions [13–15].

However, the gammachirp filters designed as an extension of the gammatone filters require high
computational power because the functions are complicated. The VLSI implementations of the gam-
matone filters have been studied using analog [9, 10] or digital circuits [11] as the gammatone filters are
also complicated. The analog implementations can achieve low-energy dissipation with CMOS scaling
issues, while the digital implementations suffer from the hardware complexity due to a large number of
multipliers. Recently, stochastic gammatone filters are presented in order to address these issues [12].
In contrast, the hardware implementation of the gammachirp filters has not been presented, to the
best of our knowledge.

In this paper, we present an area/power-aware 32-channel compressive gammachirp filterbank chip
based on stochastic computation using TSMC 65 nm CMOS general-purpose process. Stochastic
computation [16, 17] is a purely-digital implementation technique that represents data as streams of
random bits. Stochastic circuits can scale down with the advanced CMOS process, while a power-
and-area hungry multiplier used in digital infinite impulse response (IIR) filters is realized using a
simple logic gate. Using stochastic computation, the gammachirp filters are designed using a cascaded
connection of the stochastic gammatone filters [12] and asymmetric compensation filters, where both
filters are designed using cascaded 2nd-order IIR filters. However, the output signals of the stochastic
gammachirp filters are with large noise as the noise signals are added at each IIR section due to
randomness of stochastic computation. To address the issue, a fixed random-number-generation
(FRNG) technique is introduced that mitigates the randomness and hence reduces the noise signals.
This technique is similar to [18] that reuses random number sequences stored in a memory, where the
hardware implementations are different. Using the FRNG technique, large gains (dynamic ranges) of
the gammachirp filters are achieved with short lengths of stochastic bit streams. In addition, gain-
compression characteristics depending on input acoustic pressures known as human auditory effects
are naturally realized by changing the lengths of the stochastic bit streams. In comparison with the
related works [19–21], the proposed chip is the first silicon that realizes both asymmetric characteristic
in frequency domain and gain compression depending on input acoustic pressures while achieving the
best power-area product per channel.

The rest of the paper is organized as follows. Section 2 shows the design overview of the proposed
gammachirp filterbank chip. Section 3 describes the stochastic gammachirp-filter circuits based on the
FRNG technique. Section 4 evaluates the proposed chip and compares with related works. Section 5
concludes this paper.

2. Design overview of compressive gammachirp filterbank chip

2.1 Compressive gammachirp filter
Gammatone filters [3, 4] and gammachirp filters [5–8] are promising techniques for advanced speech
communication systems as these filters exhibit similar responses to the impulse responses of basilar
membrane. As opposed to the gammatone filter, the gammachirp filter is asymmetric, providing a
more realistic auditory filtering for models of auditory perception. A gammachirp filter is represented
by an impulse response [5] defined as follows:

g(t) = atM−1e−2πbERB(fr)t cos(2πfrt + clnt + φ) (t > 0), (1)

where a is a constant, M is the order of the filter, b is the bandwidth of the filter, fr (Hz) is the
asymptotic frequency of the filter, c is a parameter for the frequency modulation on the chirp rate,
and φ is the steering phase. In this paper, a is set to 1 and φ is set to 0 used [10] and M=4 and
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Fig. 1. Frequency responses of a gammachirp filter at fr=4 kHz, fs=16 kHz,
and c=−2, where gammachirp filters are modeled using gammatone filters and
asymmetric compensation filters.

b=1.019 are used in [6]. ERB(fr) is the equivalent rectangular bandwidth of the auditory filter at fr,
where ERB(fr) is 24.7+0.108fr. The frequency response of the gammachirp filter is represented [6]
as follows:

GC(f) ≈ GT (f) · HC(f), (2)

where GT (f) is the frequency response of a gammatone filter [3] and HC(f) is the frequency response
of an asymmetric compensation filter.

The gammatone filter is represented by an impulse response that is the product of a gamma distri-
bution and a sinusoidal tone as follows:

g(t) = atn−1e−2πbERB(fc)t cos(2πfct + φ) (t > 0). (3)

The transfer function of the gammatone filter in digital domain, H(z), is described using an 8th-order
digital IIR filter as follows:

H(z) =
b0 + b1z

−1 + ... + b8z
−8

1 + a1z−1 + ... + a8z−8
, (4)

where bn (0 ≤ n ≤ 8) and am (1 ≤ m ≤ 8) are coefficients. The transfer function is realized by four
cascaded IIR filters. The detail of the gammatone filter is described in [12].

The asymmetric compensation filter is designed using a cascaded digital filter defined as follows:

HC(z) =
N∏

k=1

HCk(z), (5)

where N=4 is used [6]. The digital filter at each section is designed using an IIR filter as follows:

HCk(z) =
(1 − rkejϕkz−1)(1 − rke−jϕkz−1)
(1 − rkejφkz−1)(1 − rke−jφkz−1)

, (6)

where rk = e−k·p1·2πbERB(fr)/fs , φk = 2π(fr + pk−1
0 · p2 · c · 2πbERB(fr))/fs, and ϕk = 2π(fr − pk−1

0 ·
p2 · c · 2πbERB(fr))/fs. The parameters of p0, p1, and p2 determined in [8] are used in this paper.

Figure 1 shows the frequency responses of a gammachirp filter at fr=4 kHz, fs=16 kHz, and c=−2,
where fs is a sampling frequency. In addition, in case of a compressive gammachirp filters, the gains
of the gammachirp filters are compressed when the input acoustic pressures are high as shown in
Fig. 2.

2.2 Filterbank design
A system architecture of the 32-channel compressive gammachirp filterbank chip is shown in Fig. 3.
The input signal is a signed 11-bit width at the sampling frequency (fs) = 48 kHz with a control
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Fig. 2. Example of gain-compression feature depending on input acoustic
pressure.

Fig. 3. Architecture of a 32-channel compressive gammachirp filterbank chip
with magnitude responses from 20 Hz to 20 kHz.

Fig. 4. ERB and ERB number (ERBN) listed above used for the 32-channel
stochastic compressive gammachirp filterbank chip.

signal, Nsto , that is the length of the stochastic bit streams per operation. The gammachirp filters are
represented by the impulse responses with the ERBs, where the asymptotic (center) frequency (fr)
of the gammachirp filters ranges from 20 Hz to 20 kHz. The ERBs corresponding to the frequency
range are listed in Fig. 4. The magnitude responses of the filterbank are shown in Fig. 5.

The gammachirp filters are designed using a cascaded connection of 2nd-order IIR filters as shown
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Fig. 5. Magnitude responses of the 32-channel gammachirp filterbank.

Fig. 6. Gammachirp filter designed using gammatone (top) and asymmetric
compensation filters (bottom). Each filter is designed using a four-cascaded
2nd-order IIR filter.

Fig. 7. Multiplier in stochastic computation based on unipolar coding.

in Fig. 6. The asymmetric characteristics of the gammachirp filters are realized by combining the
symmetric gammatone filters and asymmetric compensation filters.

3. Stochastic circuit implementation

3.1 Stochastic computation
Stochastic computation has been recently studied for several applications, such as low-density parity-
check (LDPC) decoding [22, 23], image processing/recognition [24–27], and digital filters [12, 28–30].
In stochastic computation, information is carried by the frequency of ones in a sequence based on
unipolar coding or bipolar coding. In this paper, unipolar coding is used. A value a is a = Pa, (0 ≤
a ≤ 1), where the probability of observing a ‘1’ to be Pa =Pr(a(t) = 1) for a sequence of bits, a(t). A
multiplier is simply designed using a 2-input AND gate [17] shown in Fig. 7.

3.2 IIR filters based on hybrid stochastic/binary computation
Figure 8 shows a 2nd-order IIR filter based on stochastic/binary hybrid computation in unipolar
coding. In the hybrid design, multipliers are designed based on stochastic computation while adders
are designed based on binary logic [31]. As unipolar coding represents only positive values, sign bits
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Fig. 8. 2nd-order IIR filter based on stochastic/binary hybrid computation
in unipolar coding, where additions are realized in binary domain and multi-
plications are realized in stochastic domain.

with stochastic bit streams are used to represent negative values. Hence, multiplications are realized
using a 2-input AND gate and a 2-input XOR gate in the stochastic IIR filter. The hybrid IIR filter
is designed for the gammachirp filters and hence it is hard to compare with other stochastic IIR
filters [29–31], directly.

Binary-to-stochastic (B2S) and stochastic-to-binary (S2B) converters are described in Fig. 9. The
timing diagrams are shown in Fig. 10. In B2S, firstly, a binary input signal is determined whether it
is positive or negative using the sign inversion block. The length of the stochastic bit stream, Nsto , is
(Ncyc −1), where Ncyc is the number of cycles for an operation in binary domain. Then, the absolute
value of the input signal is compared with random values generated by a linear feedback shift register
(LFSR) in order to generate a stochastic bit stream. In addition, a sign bit is generated to represent
negative values.

Using stochastic bit streams and sign bits, multiplications are carried out in stochastic domain for
Nsto cycles. In S2B, the number of 1’s in a stochastic bit stream is counted for Nsto cycles and is
then converted back to a binary signal for a cycle. The binary signal is changed to negative, if the
sign bit is “1”.

3.3 Fixed random-number generation (FRNG) for reducing noise signals
The stochastic gammachirp filters are designed using the cascaded connection of the stochastic gam-
matone filters and the asymmetric compensation filters as shown in Fig. 6. In the stochastic IIR
filters, there are signal variabilities as random number sequences are used in B2S. The signal vari-
abilities induce unwanted frequency components on signals and hence generate noise signals. As the
noise signals are added at each IIR filter, the output signals of the stochastic gammachirp filters are
with a large noise at the end.

To reduce the noise signals added at each section, a fixed random-number-generation (FRNG)
technique is introduced. This technique is similar to [18] that reuses random number sequences.
However, the hardware implementation is different, where the technique in [18] uses a memory that
stores the random number sequences generated by software in advance. In the conventional random-
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Fig. 9. Stochastic circuit components: binary-to-stochastic (B2S) converter
(top) and stochastic-to-binary (S2B) converter (bottom).

Fig. 10. Example of timing diagrams of B2S (left) and S2B (right) of stochas-
tic 2nd-order IIR filter.

number generation (RNG), random numbers are generated using LFSRs to generate stochastic bit
streams. Normally, the repeating cycle of LFSRs is longer than Ncyc in stochastic computation
because longer cycles tend to exhibit randomness. Hence, at every operation, different random-number
sequences are used as shown in Fig. 11(a). However, the randomness induces the noise signals in the
stochastic IIR filters.

The FRNG exploits fixed random-number sequences to reduce the randomness as shown in
Fig. 11(b). In FRNG, the same random-number sequence is used at every operation. The same
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Fig. 11. Random number sequences used in B2S based on (a) conventional
random number generation (RNG) and (b) fixed random number generation
(FRNG). In FRNG, the same random number sequence is used at every oper-
ation.

Fig. 12. Output signals of 1st section (y1) at fin = 163 Hz (left) and mag-
nitude responses of channel 28 at Nsto = 210 − 1 (right) using MATLAB sim-
ulation.

sequence mitigates the randomness and hence reduces the noise signals in the stochastic IIR filters.
The same random-number sequence at every operation can be generated when the bit width of LFSRs
is log2Ncyc, where the repeating cycle is Nsto (= (Ncyc − 1)).

Figure 12 shows the simulated output signal (y1) of the 1st section of the filter when an input
signal is a sinusoidal wave of a frequency (fIn) = 163 Hz using MATLAB. In the conventional RNG,
the bit widths (n) of the LFSRs are determined with a condition of ((2n − 1) > Nsto) for sufficient
enough bit lengths. However, the random number sequences generated using the LFSRs are different
per operation, which cause noisy signals. Hence, the magnitude responses with the conventional RNG
exhibit small dynamic ranges. To cope with the issue, the FRNG generates the same random sequence
every operation by a condition of ((2n−1) = Nsto). The same random sequence reduces the variability
of data values between operations, which leads to less noisy signals and higher dynamic ranges (40
dB and 61 dB) increases with Nsto = 210 − 1 at channel 28 than the conventional RNG.

4. Evaluation
Figure 13 shows the 32-channel stochastic gammachirp filterbank chip using TSMC 65 nm CMOS
general-purpose process with the chip area of 3.2 mm2. The performance is evaluated using the
test environment that includes Digilent Genesys 2 FPGA and Keysight N6705B shown in Fig. 14.
The fabricated chip operates from VDD = 1.0V to 0.55V at nominal temperature, which exhibits
gammachirp filter responses. The clock frequency is fs ∗ Nsto , where fs is 48 kHz and is variable
depending on Nsto . By changing Nsto and the frequency, the gain compressions are realized.

Figure 15 shows the power dissipation vs. Nsto of the proposed chip with the supply voltage of
0.55 V. In case of a low clock-frequency region (< 10 MHz), the power dissipations are not strongly
reduced by lowering the clock frequency as the total power dissipation is dominated by the static
power dissipation. Figure 16 shows energy/sample vs. Nsto of the proposed chip with the supply
voltage of 0.55V.
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Fig. 13. Photomicrograph of the proposed chip using TSMC 65 nm CMOS
process.

Fig. 14. Test environment using Digilent Genesys 2 FPGA and Keysight
N6705B.

Fig. 15. Power dissipation vs. Nsto of the proposed chip with the supply
voltage of 0.55V.

Figure 17 shows measured magnitude responses of the filterbank at channel 28 with Nsto=210 − 1,
showing the symmetric feature of the gammatone filter and the asymmetric feature of the gam-
machirp filter. Figure 18 shows comparisons of magnitude responses of the filterbank at channel 28
between floating-point result and proposed stochastic result with Nsto=210 − 1. Figure 19 shows
gain-compression features controlled by Nsto at channel 28. By changing Nsto , the gain compressions
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Fig. 16. Energy/sample vs. Nsto of the proposed chip with the supply voltage
of 0.55V.

Fig. 17. Magnitude responses of the filterbank at channel 28 with Nsto=210−
1.

are realized because smaller Nsto lowers the computation accuracy and hence the dynamic range.
Table I shows performance comparison tables with the related works [19–21]. All the conventional

filterbanks are designed using analog circuits with different processes and configurations. In terms
of the features, the proposed chip is the first silicon that realizes both asymmetric characteristic
in frequency domain and gain compression depending on input acoustic pressures. Theoretically,
the gammachirp filters can be designed using analog circuits. However, as the gammachirp filters
are narrow-band bandpass filters, it is difficult to design high-performance gammachirp filters using
analog circuits. It is because the narrow-band filters cause low dynamic ranges and high sensitivity
in devices [32]. Using many analog devices, the filter characteristics could be improved, however, the
circuit sizes would be unrealistic.

In terms of power dissipation per channel, the proposed circuit achieves around 6x smaller than
the conventional work [19] that contains the gain compression feature. The area per channel of the
proposed circuit is the 2nd smallest among the conventional works. In terms of technology scaling,
it is hard for analog circuits to be scaled down because of the process variability. In contrast, the
proposed stochastic filter can be further scaled down to recent technology nodes. The number of
channels of the proposed filter is smaller than that of the conventional works due to the limitation
of the size of the chip, however, it can be increased using larger chips. As a result, the proposed
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Fig. 18. Comparisons of magnitude responses of the filterbank at channel 28
between floating-point result and proposed stochastic result with Nsto=210−1.

Fig. 19. Gain compression controlled by Nsto at channel 28.

Table I. Performance comparisons of auditory filterbanks.

ISSCC’ 06 [19] TBCAS [20] ISSCC’ 16 [21] This work

Circuit Analog Analog Analog Stochastic
(digital)

Technology 0.25 μm CMOS 0.35 μm CMOS 0.18 μm CMOS 65 nm CMOS
Power supply [V] 2.5 3.3 0.5 0.55
Channel number 360 64x2 64x2 32

Frequency range [Hz] 210-14k 50-50k 8-20k 20-20k
Power [μW] 52,000 12,000-22,000 595 715-2,585

Power per channel [μW] 144 94-172 4.4 22-81
Area [mm2] 10.9 13.7 50.4 3.2

Area per channel [mm2] 0.03 0.11 0.39 0.1
Power-area product 1560 1320-2420 232.1 71.5-258.5

per channel [μW*mm2]
Asymmetric characteristic No No No Yes

Gain compression depending Yes No No Yes

chip realizes both asymmetric characteristic in frequency domain and gain compression depending on
input acoustic pressures while achieving the best power-area product per channel.
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5. Conclusion
In this paper, the compressive gammachirp filterbank chip based on stochastic computation has been
presented for brain-inspired area/power-efficient auditory signal processing. The FRNG technique
reduces the noise signals at the output of the stochastic gammachirp filters by mitigating the ran-
domness of stochastic computation, leading to the high gains with the short length of the stochastic bit
streams. In addition, gain-compression characteristics depending on input acoustic pressures known
as human auditory effects are naturally realized by changing the lengths of the stochastic bit streams.
The proposed filterbank chip is fabricated using TSMC 65 nm CMOS process that achieves 715-2,585
μW with the sampling frequency of 48 kHz and the chip area of 3.2 mm2. In comparison with the
related works, the proposed chip is the first silicon that realizes both asymmetric characteristic in
frequency domain and gain compression depending on input acoustic pressures while achieving the
best power-area product per channel.
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