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1 Introduction

Binaural systems aim to convey high-definition

listening experiences by synthesizing the sound pres-

sure signals at the ears of the listeners [1]. Micro-

phone array recordings and data sets of head-related

transfer functions (HRTFs) are combined with this

aim [2–6]. Accurate binaural synthesis requires to

capture an auditory scene with high spatial reso-

lution. This implies the use of a large number of

microphones, together with the complications that

arise when controlling a large number of signals.

Predicting the performance of a microphone array

in real conditions is a crucial stage for its design.

There is a particular necessity of models for pre-

dicting the robustness of an array to the transducer

noise, the microphone positioning error, and the ef-

fects of space discretization, among other sources

of perturbation. These issues have been widely ad-

dressed in the theory of beamforming [7], where sen-

sor arrays are used to synthesized spatial patterns.

Because binaural synthesis can also be formulated

as a beamforming problem, where the spatial pat-

terns are given by the HRTF datasets, beamforming

constitutes an adequate framework for investigating

the effects of noise in binaural synthesis.

In beamforming, the white noise gain is defined

as the output power due to spatially uncorrelated

white noise at the sensors [7]. This variable is used

as a general measure for robustness to such kind of

noise. The kind of arrays examined in conventional

beamforming, however, are typically limited to low

spatial resolutions [8]. To predict a more precise

improvement in the signal-to-noise ratio for higher

resolution arrays, additional analyses are required.

In this paper, the propagation of noise through

a binaural system is investigated based on the gain

in signal-to-noise ratio from the input of the mi-

crophone array to the output of the binaural sys-

tem. For this purpose, a linear model of a system

in arbitrary geometries is formulated. The model
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takes into consideration the contributions of addi-

tive white noise, which is assumed spatially uncor-

related and with a uniform distribution of energy

around the array.

Spherical arrays and spherical HRTF datasets are

of interest in binaural synthesis. The model is there-

fore tested in spherical geometries. Numerical ex-

periments consider models of high resolution arrays.

The results can be used as an objective design rec-

ommendation to identify the number of microphones

that are necessary to synthesize the spectral infor-

mation of virtual sound sources with a specified ac-

curacy in binaural systems.

2 Binaural synthesis model

For a single frequency, the microphone array

recordings are organized in the vector

p =
[
p1 p2 · · · pQ

]T
. (1)

The symbol T indicates transpose. Each entry pq

of p, where q = 1, 2, ..., Q, represents a sample in

the frequency domain of a sound pressure signal

recorded at an arbitrary position r⃗m
q , where the su-

perscript ’m’ refers to the microphones.

The dataset of HRTFs is organized in the matrix

h =

[
hleft
1 hleft

2 · · · hleft
L

hright
1 hright

2 · · · hright
L

]T

. (2)

Each entry hleft
ℓ or hright

ℓ of h, where ℓ = 1, 2, ..., L,

represents a sample in frequency of a free-field

HRTF for the left or right ear, respectively. Each

entry is characterized for an arbitrary sound source

position r⃗ v
ℓ , where the superscript ’v’ refers to the

sound sources, which are referred to as virtual loud-

speakers throughout this paper.

The synthesized binaural signals for the left and

right ears are organized in the pair

b̂ =
[
b̂left b̂right

]T
. (3)



Binaural synthesis can be summarized as the follow-

ing linear combination of p and h:

b̂ = h†Ap, (4)

where A = [aℓq] is a combination matrix of size

L×Q and † indicates conjugate transpose.

Characterizing A requires to take into considera-

tion the geometry and physical topology of the mi-

crophone array, as well as the distribution of vir-

tual loudspeakers used to obtain the HRTF dataset.

Most of the existing methods for obtaining A can

be gathered into two dual approaches depending on

weather the products h†A or Ap are optimized.

In this study, the first approach is followed be-

cause it is closely related with the theory of filter-

and-sum beamforming, which provide a convenient

framework for investigating the effects of noise.

This leads to the diagram for binaural beamform-

ing shown in Fig. 1. In this context, the binaural

synthesis equation in (4) is written as follows:

b̂ = w†p, (5)

where the beamformer matrix

w=

[
wleft

wright

]T

=

[
wleft

1 wleft
2 · · · wleft

Q

wright
1 wright

2 · · · wright
Q

]T

(6)

contains the weighting coefficients that are applied

to p so as to synthesize the spatial patterns defined

by h. The beamformer matrix is defined from (4)

and (5) as follows:

w = A†h. (7)

3 White noise gain

The white noise gain of a beamformer is defined

as the output power due to spatially uncorrelated,

unit variance white noise of at the sensors. The

norm squared of the weight vectors represents the

white noise gain [7]:

WNG=∥w∥2. (8)

For simplicity, w will represent either wleft or wright

in all of what follows. The norm is defined by

∥u∥ =
(
u†u

) 1
2

=

 Q∑
q=1

|uq|2
 1

2

< ∞. (9)

where u is an arbitrary vector of size Q × 1. This

norm is used throughout this paper.

Fig. 1 Binaural beamforming.

If the white noise gain is large, it is expected a

poor signal-to-noise ratio at the output of the beam-

former due to white noise contributions. The inverse

of the white noise gain, WNG−1, should therefore be

as high as possible. This variable is used as a general

measure for robustness. However, to predict a more

precise improvement in the signal-to-noise ratio, an

additional analysis is presented below.

4 Gain in signal-to-noise ratio

The propagation of noise through the synthesis

model in (4) can be calculated based on the gain in

signal-to-noise ratio from the input to the output:

GSNR =
SNRoutput

SNRinput
. (10)

This quantity is expected to be greater than unit

and as high as possible. To calculate GSNR, a signal

model with noise is considered below.

The vector of microphone array recordings af-

fected by additive, spatially uncorrelated white

noise is modeled as follows:

p = s+ ν, (11)

where the vector s =
[
s1 s2 · · · sQ

]T
contains

the microphone signals without noise, and the vec-

tor ν =
[
ν1 ν2 · · · νQ

]T
contains the noise only.

For this model, binaural synthesis results in

b̂ = w† [s+ ν] ,

= w†s︸︷︷︸
b̂(s)

+w†ν︸︷︷︸
b̂(ν)

, (12)

where b̂(s) denote the binaural signals from record-

ings without noise, and b̂(ν) represents the binaural

signals due to noise only.

The multichannel signal-to-noise ratio at the in-

put can be defined by

SNRinput :=
∥s∥2

∥ν∥2
(13)



with the norm in (9). The signal-to-noise ratio at

the output, for the left or right ear, can also be

defined in consistency with (9) but for the case of a

single-channel signal:

SNRoutput :=
|b̂(s)|2

|b̂(ν)|2
=

|w†s|2

|w†ν|2
. (14)

When ν has a uniform distribution of energy,

ν = ν0 ·φ, (15)

where φ =
[
ejφ1 ejφ2 · · · ejφQ

]T
is a vector

with random phases φq, (10) results in

GSNR =

|w†s|2
|ν0|2|w†φ|2

∥s∥2

|ν0|2∥φ∥2

=
|w†s|2

|w†φ|2 ∥s∥2

∥φ∥2

. (16)

By virtue of the Cauchy-Schwarz inequality for

the norm in (9), the left factor in the denominator

of (16) has the following upper bound:

|w†φ|2 ≤ ∥w∥2∥φ∥2. (17)

Equating (17) and (16), it is shown that

GSNR ≥ |w†s|2

∥w∥2∥s∥2
,

≥
|
∑

ℓ,q h
∗
ℓaℓqsq|2(∑

q|
∑

ℓ h
∗
ℓaℓq|2

)(∑
q |sq|2

) , (18)

where ∗ denotes complex conjugate. When the

recording signals are affected by additive noise that

is spatially uncorrelated and has a uniform distri-

bution of energy, the right side of (18) provides a

theoretical lower bound for the propagation of this

kind of noise through the synthesis model in (4).

To analyze the performance of (8) and (18) on

predicting improvement in signal-to-noise ratio, a

physical model for A would be useful. We describe a

model for binaural synthesis in spherical geometries.

5 Model for spherical geometries

In the spherical coordinate system shown in Fig. 2,

a point in space r⃗ = (r, θ, ϕ) is specified by its radial

distance r, azimuth angle θ ∈ [−π, π] and elevation

angle ϕ ∈ [−π
2 ,

π
2 ]. Angles can be merged into a

variable Ω = (θ, ϕ) in such a way that a point in

space is also represented by r⃗ = (r,Ω).

When a rigid spherical microphone array of ra-

dius rm is used for recording, each entry pq of p

in (1) correspond to a microphone signal recorded

Fig. 2 Spherical coordinates. The origin 0⃗ coin-

cides with the centers of the array and head.

at r⃗m
q = (rm,Ω

m
q ). Similarly, when a spherical vir-

tual loudspeaker array of radius rv is used to ob-

tain the HRTF dataset h in (2), each entry hleft
ℓ or

hright
ℓ corresponds to a virtual loudspeaker position

r⃗ v
ℓ = (rv,Ω

v
ℓ ).

In such spherical geometries, the entries aℓq of A

in (4) can be modeled by [4, 9]:

aℓq =
1

4π(N + 1)2
· exp(jkrv)

rv
·

(Q+1)2∑
n=0

(2n+ 1)Rreg
n (rm, rv, k)Pn(cosΘℓq).

(19)

The angular part of the sum in (19) is defined by

the Legendre polynomial Pn of order n evaluated

at the cosine of the angle Θℓq between r⃗ v
ℓ and r⃗m

q .

The radial part of the sum in (19) is defined by the

regularized radial filter

Rreg
n =

Rn

1 + λ2|Rn|2
, Rn = −kr2mh

′
n(krm)

hn(krv)
. (20)

Here, λ is the regularization parameter, hn repre-

sents the spherical Hankel function of second kind

and order n, and ′ indicates derivative with respect

to the argument.

6 Results of the experiments

Figure 3 shows the predictions of robustness ob-

tained with WNG−1 from (8), and with the pro-

posed lower bound for GSNR in (18). The binau-

ral beamformer was modeled by using (19) with

λ = 1 × 10−3. The minimum of GSNR was ob-

tained from the simulation of 5000 sources ran-

domly distributed around the array at 1.5 m dis-

tance. The microphones and virtual loudspeakers

were distributed using spherical grids based on the

geometry of an icosahedron.

The top panel shows the results for WNG−1,

where it can be observed that increasing the number

of microphones improved the expected robustness at
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Fig. 3 Evaluation of inverse of white noise gain

(WNG−1) and gain in signal-to-noise ratio (GSNR)

for a binaural beamformer in spherical geometries.

Results where obtained for rm = 8.5 cm, rv = 1.5 m,

L = 1962 virtual loudspeakers, and different num-

bers of microphones (Q =12, 42, 92, 162, 252, 362,

492, 642, 812, 1002, 1212, 1442, 1692, 1962.).

lower and middle frequencies. However, when the

number of microphones increased, its contribution

to robustness only increased slightly. This was spe-

cially true at higher frequencies.

The bottom panel shows the results for GSNR. At

lower frequencies up to around 2 kHz, the results

confirmed the tendency predicted by WNG−1. Nev-

ertheless, the results showed that adding more mi-

crophones to the system does not necessarily imply

an improvement in robustness at higher frequencies.

7 Conclusion

A linear model for binaural systems in arbitrary

geometries was formulated. The model takes into

consideration the contributions of additive white

noise, which is assumed spatially uncorrelated and

with a uniform distribution of energy around the ar-

ray. The propagation of such kind of noise through

the model was investigated based on two predictors

of robustness: 1) the inverse of white noise gain used

in beamforming, and 2) a proposed lower bound for

the gain in signal-to-noise ratio.

Numerical experiments considering a binaural sys-

tem in spherical geometries showed that similar pre-

dictions at lower frequencies can be obtained with

the white noise gain and the gain in signal-to-noise

ratio. However, results at higher frequencies showed

that the white noise gain might not be sufficient to

predict robustness in this region. In this regard, the

estimates obtained with the lower bound to the gain

in signal to noise ratio predicted much lower levels

of robustness at higher frequencies.

Additional experiments based on a more precise

model of noise, accompanied with objective valida-

tions in real world conditions, could give more in-

sight into the findings reported in this work.
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