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a b s t r a c t

The performance degradation of speech communication systems in noisy environments

inspired increasing research on speech enhancement and noise reduction. As a well-

known single-channel noise reduction technique, spectral subtraction (SS) has widely

been used for speech enhancement. However, the spectral order b set in SS is always

fixed to some constants, resulting in performance limitation to a certain degree. In this

paper, we first analyze the performance of the b-order generalized spectral subtraction

(GSS) in terms of the gain function to highlight its dependence on the value of spectral

order b. A data-driven optimization scheme is then introduced to quantitatively

determine the change of b with the change of the input signal-to-noise ratio (SNR).

Based on the analysis results and considering the non-uniform effect of real-world noise

on speech signal, we propose an adaptive b-order GSS in which the spectral order b is

adaptively updated according to the local SNR in each critical band frame by frame as in

a sigmoid function. The performance of the proposed adaptive b-order GSS is finally

evaluated objectively by segmental SNR (SEGSNR) and log-spectral distance (LSD), and

subjectively by spectrograms and mean opinion score (MOS), using comprehensive

experiments in various noise conditions. Experimental results show that the proposed

algorithm yields an average SEGSNR increase of 2.99 dB and an average LSD reduction of

2.71 dB, which are much larger improvement than that obtained with the competing SS

algorithms. The superiority of the proposed algorithm is also demonstrated by the

highest MOS ratings obtained from the listening tests.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Acoustic background noises present in daily-life en-
vironments significantly degrade the performance of
many speech applications, such as speech communication
systems and sound-based human–machine interaction. To
solve these problems and further improve the perfor-
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mance of these applications in adverse environments, it is
therefore essential to apply effective speech enhancement
algorithms as a front-end processor [1].

A variety of speech enhancement algorithms have been
reported in the literature [1]. Among them, single-channel
techniques play a crucial role, since the number of
microphones is limited on account of some practical
requirements. As a well-known single-channel speech
enhancement method, spectral subtraction (SS) was
first proposed more than 20 years ago and has been
widely used due to its simplicity in implementation
and its effectiveness in reducing additive noise [2].
The basic concept underlying SS is to subtract the
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estimated spectrum of the noise signal, which is originally
calculated in non-speech periods, from that of the noisy
signal [2].

SS has recently been modified and improved to over-
come its shortcomings (e.g., low noise reduction perfor-
mance and ‘‘musical’’ noises) in different ways [2–8]. Boll
[2] applied several secondary procedures to the processed
signals after SS to further attenuate residual noise. To
enhance noise reduction ability and mitigate the ‘‘musi-
cal’’ noise, Berouti et al. [3] introduced two additional
parameters, an oversubtraction factor that controls the
amount of noise to be subtracted and a spectral flooring
factor that mitigates the ‘‘musical’’ noise. Furthermore,
Schless et al. suggested to set both the oversubtraction
factor and the spectral flooring factor based on the
current signal-to-noise ratio (SNR), achieving higher
noise reduction performance [4]. Evans et al. [9] gave a
possible explanation for the higher noise reduction per-
formance and the lower ‘‘musical’’ noise achieved with
that method [4] in the context of automatic speech
recognition. Kamath et al. proposed to empirically set
different oversubtraction factors in different subbands,
resulting in improved speech quality and largely re-
duced ‘‘musical’’ noise in colored noise conditions [5].
Moreover, the performance of SS was also enhanced by
continuously updating noise estimates even in speech-
presence periods, by using a minimum statistic noise
estimation technique [10,11] or a quantile-based noise
estimation technique [12], instead of noise estimation in
non-speech periods only. More recently, Sim et al. derived
a short-time spectral amplitude (STSA) estimator of the
speech signal based on a parametric formulation of
the generalized spectral subtraction (GSS) by minimizing
the mean-square error (MSE) between the speech spec-
trum and its estimate [6].

Following the work presented in [6], the original SS
and its modifications can be summarily represented as
jŜjb ¼ ajXjb � bjN̂jb, where Ŝ, X and N̂ are the short-time

Fourier transforms (STFTs) of the clean speech estimate,
the noisy signal and of the noise estimate; a and b are the
parameters, j � j denotes the module operator, and b is
the spectral order on which we focus in this research. In
the traditional SS algorithms mentioned above, the
spectral order b is always fixed to some constant. For
example, b ¼ 1:0 corresponds to the amplitude SS [2,7]
and b ¼ 2:0 corresponds to the power SS [3,5,10–12].
Constant values of b involve a low computational cost and
result in a certain degree of noise reduction. Interestingly,
the results of two researches [6,8] indicate that the SS
method using b with a relatively small value (e.g., b ¼ 1:0
or 0.5) reduces a large degree of noise components,
leading to a ‘‘cleaner’’ processed signal in conditions of
low SNR. For high SNRs, a large value of b (e.g., b ¼ 2:0) is
preferred to preserve the speech components. Therefore,
the appropriate value of b is dependent on the noise
conditions that are considered (i.e., the SNR). You et al.
suggested to determine a constant value for the spectral
order b in each frame according to the frame SNR as
in a linear function under the STSA estimator scenario
[13,14]. Obviously, this algorithm assumes a uniform
effect of noise on speech signals in the frequency domain
and a linear dependence of the b value on the local input
SNR conditions, which are not satisfied in practical
environments.

Overall, the fixed b values set in the traditional
algorithms imply that the noise signal affects the desired
signal to a constant SNR degree, which is not reasonable in
relation to real-world noise signals and limits the
performance improvement of the SS algorithms. In
practical environments, however, the desired signal is
always contaminated by noise in a time-varying fre-
quency-dependent way, resulting in varying SNRs in the
time–frequency domain. Therefore, it is believed that
adaptively assigning different appropriate values to the
spectral order b according to the current noise conditions
(e.g., SNR) is useful in improving the performance of SS
algorithms.

To overcome the drawbacks of the traditional SS
methods, in this paper, we investigate the perfor-
mance dependence of the b-order GSS on the value of
spectral order b, describe this dependence quantitatively
through a data-driven optimization procedure, and
further propose an adaptive b-order GSS for speech
enhancement. The characteristics of the b-order GSS are
analyzed in terms of the gain function, with a special
focus on the impact of the b value on the noise reduction
performance of the b-order GSS. Results of the analysis
indicate that the value of b should be increased as the
input SNR increases to preserve speech components, and
should be decreased as the input SNR decreases to
enhance noise reduction performance. The change ten-
dency of b with the local input SNR is quantitatively
derived through a data-driven optimization procedure,
which shows that the optimized b varies with the local
SNR in a way that can be approximated by a sigmoid
function. Moreover, considering the non-uniform effect of
real-world noise on speech signal in the time–frequency
domain, we propose to determine the value of the spectral
order b adaptively according to the local input SNR in each
subband frame by frame as in the sigmoid function.
Experimental results in various noise conditions demon-
strate that the proposed method outperforms the tradi-
tional SS algorithms in terms of both objective and
subjective evaluation measures.

The remainder of this paper is organized as follows.
Section 2 formulates the problem to solve and de-
scribes the b-order GSS. Section 3 discusses the char-
acteristics of the b-order GSS to highlight the impact of
the spectral order b on the noise reduction performance of
the b-order GSS. In Section 4, the non-uniform effect of
real-world noise on speech signal in the time–frequency
domain is discussed, a data-driven optimization proce-
dure is then introduced to derive the quantitative change
tendency of the value of b with the local input SNR, and an
adaptive b-order GSS is finally proposed in which the
spectral order b is adaptively adjusted according to the
local input SNRs as in the sigmoid function. Section 5
details the implementation of the proposed adaptive
b-order GSS. Experimental results are provided in
Section 6 followed by general discussions on the tradi-
tional and proposed SS algorithms in Section 7. Conclu-
sions are finally given in Section 8.
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2. b-Order GSS

2.1. Problem formulation

Let sðtÞ and nðtÞ denote the speech signal and the
uncorrelated additive noise signal, respectively, where t is
the discrete-time index. The observed noisy signal xðtÞ is
the sum of the original clean speech signal sðtÞ and the
disturbing noise nðtÞ, given by

xðtÞ ¼ sðtÞ þ nðtÞ. (1)

Applying the STFT, the observed signal in the time–
frequency domain is represented as

Xðk; ‘Þ ¼ Sðk; ‘Þ þ Nðk; ‘Þ, (2)

where k and ‘ are the frequency bin index and the time
frame index, respectively; Xðk; ‘Þ, Sðk; ‘Þ and Nðk; ‘Þ are
STFTs of the corresponding signals.

The b-order GSS method is defined as [6]

jŜbðk; ‘Þj
b ¼ abðk; ‘ÞjXðk; ‘Þj

b � bbðk; ‘ÞE½jNðk; ‘Þj
b�, (3)

where b is the spectral order, Ŝbðk; ‘Þ denotes the estimate
of the speech spectrum using the b-order GSS method,
abðk; ‘Þ and bbðk; ‘Þ are the parameters used in the b-order
GSS method, and E½�� is the expectation operator. Note that
the speech spectrum estimate Ŝbðk; ‘Þ and the parameters
abðk; ‘Þ and bbðk; ‘Þ are dependent not only on time and
frequency, but also on the spectral order b. The formula-
tion in Eq. (3) describes the original SS method and a
number of its modifications. If b ¼ 1:0, the expression in
Eq. (3) represents the amplitude SS [2,7]. If b ¼ 2:0, the
expression represents the power SS [3,5,10–12].

2.2. b-Order GSS

The parameters abðk; ‘Þ and bbðk; ‘Þ in the b-order GSS
are determined and optimized by minimizing the MSE
ebðk; ‘Þ between the b-order speech spectrum amplitude
jSðk; ‘Þjb and its estimate jŜbðk; ‘Þj

b, that is,

ðabðk; ‘Þ; bbðk; ‘ÞÞ ¼ arg min
a; b

Ef½ebðk; ‘Þ�
2g, (4)

where

ebðk; ‘Þ ¼ jSðk; ‘Þj
b � jŜbðk; ‘Þj

b. (5)

To simplify the derivation procedure, it is further
assumed that each individual spectral component of
speech and noise signals is a statistically independent
complex Gaussian random variable, as considered in
[15,16]. Under this complex Gaussian assumption and
substituting Eqs. (2) and (3) into Eq. (5), the optimal
parameters are then determined by differentiating Eq. (5)
with respect to the individual parameters followed by
setting the results equal to zero. As a result, the
parameters abðk; ‘Þ and bbðk; ‘Þ are derived as [6]

abðk; ‘Þ ¼
½xbðk; ‘Þ�b

1þ ½xbðk; ‘Þ�b
, (6)

bbðk; ‘Þ ¼
½xbðk; ‘Þ�b

1þ ½xbðk; ‘Þ�b
ð1� ½xbðk; ‘Þ��b=2Þ, (7)
where xbðk; ‘Þ is referred to as the a priori SNR [15],
defined as

xbðk; ‘Þ ¼
E½jŜbðk; ‘Þj

2�

E½jN̂ðk; ‘Þj2�
, (8)

where N̂ðk; ‘Þ is the estimate of the noise spectrum
calculated in speech pauses in the current implementa-
tion. The estimate of the a priori SNR, xbðk; ‘Þ, is updated in
a decision-directed scheme [15] which significantly
decreases the residual ‘‘musical’’ noise as detailed in
[17]. Substituting the optimal parameters in Eqs. (6) and
(7) into Eq. (3), the gain function of the b-order GSS
method is finally represented as [6]

Ĝbðk; ‘Þ ¼
jŜbðk; ‘Þj

jXðk; ‘Þj

¼
½xbðk; ‘Þ�b

1þ ½xbðk; ‘Þ�b

( )1=b

1� ð1� ½xbðk; ‘Þ��b=2Þ

(

�G
b
2
þ 1

� �
1

gðk; ‘Þ

� �b=2
)1=b

, (9)

where Gð�Þ denotes the Gamma function, and gðk; ‘Þ is the
a posteriori SNR [15] defined as

gðk; ‘Þ ¼ E½jXðk; ‘Þj2�

E½jN̂ðk; ‘Þj2�
. (10)

Note that in addition to the a priori SNR xbðk; ‘Þ and the a

posteriori SNR gðk; ‘Þ on which the traditional SS algo-
rithms are always dependent, the gain function of the
b-order GSS given in Eq. (9) is further a function of the
spectral order b. Moreover, in practical implementation, in
order to avoid severe speech distortion, the gain function
is usually restricted by a threshold with low value (e.g.,
Gmin ¼ 0:01).

3. Analysis of b-order GSS

In this section, we analyze the performance of the
b-order GSS in terms of the gain function that is defined in
Eq. (9) to highlight its dependence on the value of the
spectral order b. For clarity, the frequency bin index k and
the frame index ‘ are omitted in this section.

In order to make the following discussion more easily
understandable, it should first be noted a the low gain
function normally leads to a high noise reduction and
concomitantly a high speech distortion; on the other
hand, a high gain function generally yields a low speech
distortion and a low noise reduction. Concerning the
analysis of the b-order GSS, Fig. 1(a) plots the gain of the
b-order GSS versus the a priori SNR x for some typical
values of b when g ¼ 10 dB; Fig. 1(b) plots the gain of the
b-order GSS versus the a posteriori SNR g when x ¼ 10 dB.
Fig. 1 demonstrates that for a fixed b, the gain of the
b-order GSS increases as the a priori SNR and the a

posteriori SNR increase, resulting in a decreasing noise
reduction. This observation is reasonable because a high
degree of noise reduction is only needed in low input SNR
conditions. More importantly, for different typical values
of b, the different gains of the b-order GSS result in
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Fig. 1. (a) b-Order GSS gain versus the a priori SNR x for different values

of b when g ¼ 10 dB; (b) b-order GSS gain versus the a posteriori SNR g
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different degrees of noise reduction performance. The
dependence of the performance of the b-order GSS on the
value of b is further highlighted in Fig. 2, which plots
the gain function versus the values of b for different the a

priori SNRs and for different the a posteriori SNRs. Fig. 2
indicates that the gain function of the b-order GSS
increases (i.e., the degree of noise reduction decreases)
as the value of b increases, especially at relatively high
input SNRs. While, in the speech-stop following pause
intervals where the a priori SNR is relatively high due to
the decision-direction estimation technique and the a

posteriori SNR is extremely low due to the absence of
speech signal, the gain function might be of the relatively
low gain especially for larger value of spectral order
b. Moreover, a low spectral order b generates a low gain
function, corresponding to a high noise reduction and a
large speech distortion. These analytical results indicate
that the noisereduction performance of the b-order GSS is
greatly dependent on the value of the spectral order b, and
that the b value that offers the best performance in
different SNR conditions should also be different (i.e., the
b value is dependent on the current SNR). Therefore, it is
feasible for the b-order GSS to achieve higher noise
reduction with lower speech distortion by adjusting the
spectral order b to an appropriate value.

In the traditional SS methods [2–8], however, the
spectral order b is always fixed to certain constants (e.g.,
b ¼ 1:0 and 2.0) for all frames and all frequency bins. The
b value that is computed to give an acceptable noise
reduction performance at a low SNR, corresponding to a
low gain function, normally introduces severe speech
distortion at a high SNR. On the other hand, the b value
that is calculated to yield an acceptable performance at a
high SNR, corresponding to a high gain function, generally
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provides low noise reduction performance at a low SNR.
More specifically, if a extremely high b value is used in a
speech-absence frame/band, residual noises will be
observed due to the use of a large gain function. If an
extremely low b value is used in a speech-presence frame/
band, part of the speech component will be removed,
although the noise components are also attenuated
through an extremely low gain function. As a result, the
fixed values of b, which are independent of the current
noise conditions, result in the performance limitation of
the traditional SS methods, especially in time-varying
real-world noise conditions.

As discussed above, the value of the spectral order b
has a great influence on the performance of the b-order
GSS. Considering the fact that the SNRs in practical
conditions are time-varying and frequency-dependent
(see detailed discussion in Section 4.1), the value of b
should be adaptively updated according to the current
SNR, finally improving the performance of the b-order
GSS. In our proposed adaptive b-order GSS, therefore, we
can exploit the relationship between the performance of
the b-order GSS and the b value by adjusting b to an
appropriate value to attenuate noise components as much
as possible while preserving speech components. More
specifically, a small value of b is used in a speech-absence
frame/band (i.e., a low SNR) to enhance noise reduction
through a low gain, and large value of b is utilized in a
speech-presence frame/band (i.e., a high SNR) to preserve
speech components through a high gain. In this case,
though noise components are also less attenuated, they
are always masked by the strong concurrent speech
components. Therefore, the influence of the b value on
the gain of the b-order GSS provides flexibility in
suppressing noise components and preserving speech
components, by adjusting the spectral order b to an
appropriate value according to local SNRs in the time–
frequency domain.

4. Adaptive b-order GSS

As discussed in Section 2, the gain function of the b-order
GSS in Eq. (9) was derived under the assumption that each
spectral component of speech and noise signals follows a
statistically independent Gaussian distribution [6]. Though
the independent Gaussian distribution is statistically rea-
sonable and widely used due to its simplicity [15], the strong
correlation of the spectral components between adjacent
frequency bins has recently been taken into account [16,18].
Considering these strong correlations, the appropriate value
of b should be determined depending not only on the
knowledge of the current frequency bin under consideration
but also on that of the neighboring bins. This is believed to
greatly improve the robustness and accuracy of the
estimated b value.

4.1. Non-uniform effect of noise on speech in the

time– frequency domain

In the traditional SS methods, the constant values of
the spectral order b imply that the desired speech signal is
contaminated by additive noise at a constant SNR across
all frequency bins in a time-invariant way. This is not the
case, however, with real-world noise (e.g., car noise and
babble noise). In real-world environments, noise signals
that are mostly time-varying and colored affect target
speech signal non-uniformly over the entire signal and the
whole spectrum. In the time domain, speech signals are a
highly non-stationary signal whose characteristics vary
greatly over time, e.g., the speech-presence period is
completely different from the speech-absence period.
Moreover, characteristics of noise signals also change over
time due to the time-varying properties of the noise
sources. The time-varying characteristics of speech and
noise signals result in the change of the local SNR over
time, further indicating that the value of b should vary
with time. In the frequency domain, the energy of speech
is not uniformly distributed over all frequency bins, e.g.,
the frequency components corresponding to the formants
are generally characterized by a high energy of speech.
Moreover, the colorness of real-world noise generally
affects a speech signal to a different degree in the different
frequency bins. Thus, the frequency-dependent properties
of speech and noise signals result in changes of the local
SNR with frequency, further indicating that the value of b
should vary with frequency. As a result, the value of b
should be adaptively updated according to the current
local SNR in the time–frequency domain.

These characteristics are highlighted by a typical
example shown in Fig. 3, in which the speech signal
(‘‘Sekando arubamu o happyou shitekara tuâ ni deru.’’) is
corrupted by real-world car noise at a global SNR of 10 dB.
Fig. 3 demonstrates that the local SNR greatly varies with
time due to the time-varying characteristics of the speech
and noise signals, and also changes significantly for
different subbands because of the colorness of the noise
signal and of the non-uniform spectral energy distribution
of the speech signal. As a result, the speech signal
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corrupted by real-world noise is normally characterized
by different local SNRs in different partitions in the
time–frequency domain. Accordingly, the appropriate
value of the spectral order b must be adaptively
determined according to the local SNR in the time–
frequency domain.

4.2. Adaptive scheme for an appropriate value of spectral

order b

4.2.1. Data-driven optimization of spectral order b
The discussions on the performance dependence of the

b-order GSS on the value of b in Section 3 indicate that it
is desirable to increase the value of b as the SNR increases
to preserve the speech components, and to decrease the
value of b as the SNR decreases to enhance the noise
reduction performance. After knowing these qualitative
results, one further problem that has to be solved is to
determine how the appropriate (optimized) value of b
quantitatively changes as the local input SNR changes.
Since it is difficult to theoretically solve this problem, we
turn to model this change tendency through a data-driven
optimization approach.

The basic idea of the data-driven optimization that we
exploited is to find the appropriate value of the spectral
order b that is able to minimize the distance between the
spectral amplitude of the clean signal and that of its
estimate. In our data-driven optimization procedure, 10
speech sentences were randomly selected from the NTT
database [19], and two noise signals (‘‘car’’ and ‘‘babble’’)
were taken from the NOISEX-92 database [20]. The speech
and noise signals were first downsampled to 8 kHz and
then mixed with an global SNR ranging from �40 to 40 dB.
We assume that the noise spectrum is known a prior in
this optimization procedure. For a given value of b, the
gain function of the b-order GSS is calculated using Eq. (9),
and then used to enhance the target speech signal.
Furthermore, considering the mechanism of human
perception, we propose to optimize the spectral order b
in each critical subband by minimizing the distance
between the spectral amplitude jSðk; ‘Þj of the clean signal
and that of its estimate jŜbðk; ‘Þj in the corresponding
subband, that is,

bopt
m ¼ arg min

0:1pbp3:0

Xomþ1

k¼om

jjSðk; ‘Þj � jŜbðk; ‘Þjj

 !
, (11)

where the range of b is empirically confined to ½0:1;3:0�,
and om denotes the boundary frequency of the m-th
critical band. Though only 10 speech sentences are used in
the optimization procedure, we should note that the
optimization is performed in the following scenarios: in
each frames (each speech sentence is divided into
220–350 overlapping frames by windowing before Fourier
transform), in each critical subband (e.g., 18 subbands)
and at the different global SNR conditions (that is, �40 to
40 dB with the step of 10 dB). It is therefore believed that
the optimization of spectral order b is sufficient in the
statistical sense, and the parameters obtained from the
this optimization procedure might be able to be applied in
other different conditions.
Fig. 4 shows the scatter plot of the optimized b value
against the local input SNR (defined in Eq. (12) below) and
the mean curve, as well as the fitted sigmoid function in the
‘‘car’’ and ‘‘babble’’ noise conditions. The results shown in
Fig. 4 indicate that: (1) the optimal b value should increase
(decrease) as the local input SNR increases (decreases),
which proves the analysis results discussed in Section 3;
(2) there exists a strong correlation between the optimal b
value and the local input SNR; (3) most importantly, the
change tendency of the appropriate value of b with the
change of the local input SNR can be approximated by a
sigmoid function defined in Eq. (13) below, which quantita-
tively describes the dependency of the noise reduction
performance of the b-order GSS on the spectral order b and
motivates us to model this change tendency with a sigmoid
function in our proposed algorithm.
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4.2.2. Adaptive determination of spectral order b
Considering the strong correlation of spectral compo-

nents between adjacent frequency bins [16,18], we
propose to update the value of b according to the local
SNR in each subband instead of the instantaneous SNR in
each individual frequency bin. This estimation scheme
greatly improves the robustness and accuracy of the b
estimate due to the use of the information of the
neighboring frequencies. Considering the mechanism of
human perception, the whole spectrum is first divided
into subbands according to the critical-band scale [21].
Then, the local SNR rðm; ‘Þ in the m-th critical band and
the ‘-th frame is calculated as

rðm; ‘Þ ¼ 10 log10

Pomþ1

k¼om
jjXðk; ‘Þj � jN̂ðk; ‘Þjj2Pomþ1

k¼om
jN̂ðk; ‘Þj2

 !
, (12)

where om denotes the boundary frequency of the m-th
critical band.

As shown in Section 4.2.1, the average change of the
optimized b value with the change of the local input SNR
is well approximated by a sigmoid function. Therefore, we
propose to determine the appropriate estimate of the
spectral order ~bðm; ‘Þ according to the local SNR rðm; ‘Þ in
each critical band frame by frame by use of the sigmoid
function, given by

~bðm; ‘Þ ¼
B

1þ e�A½rðm;‘Þ�D�
, (13)

where the parameter A controls the changing speed of the
value of ~bðm; ‘Þ with respect to the local SNR rðm; ‘Þ, B

determines the range of the value of ~b, and D denotes the
shift along the SNR axis.

In addition to updating the spectral order ~bðm; ‘Þ
according to the local SNR in the time–frequency domain,
we limit the value of ~bðk; ‘Þ to a minimum value bmin, since
an extremely low b value introduces severe speech
distortion through an extremely low gain function. As a
result, the appropriate value of the spectral order b̂ðm; ‘Þ is
finally determined as

b̂ðm; ‘Þ ¼ max½ ~bðm; ‘Þ;bmin�. (14)

5. Implementation of adaptive b-order GSS

The proposed adaptive b-order GSS consists of three
main blocks: spectral analysis/synthesis, adaptive spectral
order b estimation and noise suppression, illustrated in
Fig. 5.

In the proposed method, the observed noisy signal is
first windowed by a half-overlapped hann window of 512
samples, and then spectrally analyzed using the fast

Fourier transform (FFT). With the 8 kHz sampling rate
used in our implementation, this gives a window length of
64 ms.

To adaptively determine the appropriate value of the
spectral order b, the frequency components are grouped
into 18 subbands with the boundary frequencies calcu-
lated in the critical-band scale that has been shown to be
advantageous for human perception. The noise spectrum
estimation is performed in the speech pauses with the
help of a voice activity detector (VAD) that is manually
done in the current implementation. Based on the local
SNR rðm; ‘Þ in Eq. (12), we compute the appropriate
spectral order estimate b̂ðk; ‘Þ using Eqs. (13) and (14).

To perform noise suppression, the a priori SNR and the
a posteriori SNR are first calculated with Eqs. (8) and (10),
respectively. With the newly obtained spectral order
estimate b̂ðm; ‘Þ, the gain function can be computed using
Eq. (9) and used to suppress noise signals.

At the last step, the enhanced speech spectrum is
generated by combining the enhanced speech amplitude
spectrum with the phase of the noisy inputs. The
enhanced speech signal is finally synthesized by comput-
ing the inverse STFT, and by overlapping and adding two
consecutive frames according to the overlap-and-add
method.

6. Experiments and results

To validate the usefulness of the proposed adaptive
b-order generalized spectral subtraction (PRO-SS), its
performance was investigated in various noise conditions
and further compared to that of the traditional SS
algorithms, including the power SS (POW-SS) by setting
b ¼ 2:0 in [6] , the amplitude SS (AMP-SS) by setting b ¼
1:0 in [6] and the SS algorithm (SR-SS) by setting b ¼ 0:5
in [6]. Note that the traditional SS algorithms were
implemented by setting the spectral order b to the fixed
values (2.0, 1.0 and 0.5) in the gain function of the GSS
defined in Eq. (9). The reasons for the implementation and
comparison are: (i) The PRO-SS method is a derivation of
the GSS algorithm in [6]. The comparison would highlight
the added-value of the PRO-SS algorithm that we propose
here. (ii) Since, in our PRO-SS algorithm, the ‘‘decision-
directed’’ scheme [15] is used to estimate the a priori SNR,
our algorithm should be compared to those that also use
the ‘‘decision-directed’’ SNR estimation. This comparison
will avoid the necessity to measure the contribution of the
‘‘decision-directed’’ SNR estimation, instead of the con-
tribution of the proposed adaptive scheme for the spectral
order. The performance was evaluated in terms of both
objective and subjective speech quality measures.

6.1. Experimental configuration

We assess the performance of the PRO-SS objectively
and subjectively with the following experiments: we
randomly selected 40 clean continuous speech sentences
produced by two females and two males from the NTT
speech database with a sampling rate of 44.1 kHz at 16
bits [19]. Three types of noise sources, ‘‘car’’, ‘‘babble
(speech-like)’’ and ‘‘train’’, were chosen from the NOISEX-
92 database [20]. The clean speech and noise signals
were first downsampled to 8 kHz. The noise signals were
then scaled to obtain a prescribed input SNR, before
they were added to the clean speech signal. We gene-
rated noisy speech signals artificially by adding various
noise signals to the clean signals at different SNRs ranging
from 0 to 15 dB with a 5-dB step size. Note that the car
noise was a stationary signal, whereas the babble and
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Fig. 5. Block diagram of the proposed adaptive b-order generalized spectral subtraction.
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train noises were non-stationary signals with different
degrees of non-stationarity. The parameters used in the
PRO-SS method which were introduced in Section 4.2.2
and used in Fig. 4 were set as follows: A ¼ 0:1, B ¼ 2:0,
D ¼ 7 and bmin ¼ 0:1; the spectral floor Gmin ¼ 0:01
corresponding to a maximal noise attenuation of roughly
40 dB; and a commonly used value of 0.98 for the
smoothing factor in the decision-directed approach of
the a priori SNR, as in [15–17].
6.2. Objective evaluation

6.2.1. Evaluation measures

To evaluate the SS methods for speech enhancement,
two objective speech quality measures were used:
segmental SNR (SEGSNR) and log-spectral distance (LSD).

The first, SEGSNR, is a widely used objective evaluation
measure for speech enhancement algorithms and has
been proved to be closely correlated to subjective speech
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quality [22]. SEGSNR is defined as the ratio of the power of
clean speech to that of noise signal embedded in a noisy
signal or an enhanced signal by the studied algorithms,
given by [23]

SEGSNR

¼
10

L

XL�1

‘¼0

log10

PK�1
k¼0 ½sð‘K þ kÞ�2PK�1

k¼0 ½ŝð‘K þ kÞ � sð‘K þ kÞ�2

 !
, (15)

where sð�Þ is the reference speech signal, ŝð�Þ is the noisy
signal or the enhanced signal processed by the tested
algorithms, and L and K represent the number of frames in
the signal and the size of STFT, respectively. The SNR in
each frame is limited to the perceptually meaningful
range between 35 and �10 dB. This prevents the SEGSNR
measure from being biased in the frames that do not
contribute significantly to overall speech quality [24].
Note that a higher SEGSNR means a higher speech quality
of the enhanced signal.

The second measure is LSD, which is often used to
assess the distortion of the desired speech signal [25].
LSD is defined as the difference between the log spec-
trum of the clean speech and that of the noisy signal
or the enhanced signal by the studied algorithms, given
by [25]

LSD ¼
10

L

XL�1

‘¼0

1

K

XK

k¼0

½1og10 ASðk; ‘Þ

 

� 1og10 AŜðk; ‘Þ�2
!1=2

, (16)

where ASðk; ‘Þ9maxfjSðk; ‘Þj2; dg is the clipped spectral
power, such that the log-spectrum dynamic range is
Table 1

Segmental SNR (dB) of the noisy signal, the traditional power SS output when b
SS), the traditional SS output when b ¼ 0:5 (SR-SS) and of the proposed adaptive

Algorithm Car Babble

0 5 10 15 0 5

Noisy �3.23 0.01 3.50 7.22 �3.01 0.

POW-SS 0.02 2.97 5.77 8.26 �0.77 2.

AMP-SS 0.95 3.83 6.77 9.37 0.22 2.

SR-SS �0.65 0.73 2.29 3.89 �0.88 0.

PRO-SS 1.33 4.49 7.39 9.62 0.72 3.

Table 2

Log-spectral distance (dB) of the noisy signal, the traditional power SS output w

(AMP-SS), the traditional SS when b ¼ 0:5 (SR-SS) and of the proposed adaptive

Algorithm Car Babble

0 5 10 15 0 5

Noisy 8.34 6.00 4.22 2.88 9.03 6.4

POW-SS 5.43 4.02 2.95 2.18 6.44 4.5

AMP-SS 4.73 3.60 2.72 2.11 5.43 4.0

SR-SS 5.75 5.02 4.33 3.77 5.88 5.11

PRO-SS 4.67 3.47 2.60 2.08 5.12 3.9
confined to about 50 dB (that is, d ¼ 10�50=10maxk;‘

jSðk; ‘Þj2g). Note that a lower LSD level indicates less
speech distortion.
6.2.2. Evaluation results

The experimental results of SEGSNR and LSD averaged
across all sentences in the three noise conditions are
summarized in Tables 1 and 2, respectively. Table 1
presents, except for the SR-SS, the three other tested
algorithms (i.e., POW-SS, AMP-SS and PRO-SS) all improve
the SEGSNR to different degrees in all noise conditions
at all SNR levels, especially at the low SNRs. Using the
SR-SS method, slight SEGSNR improvements are ob-
served in the low SNR conditions and disappear in
the middle and high SNR conditions, resulting in the
worst speech enhancement performance among the
tested algorithms. This is because the SR-SS reduces
the noise signal at the cost of severe target signal
distortion, which is demonstrated with waveforms
and spectrograms in Section 6.3.1. With regard to the
POW-SS and AMP-SS methods, the PRO-SS consis-
tently yields the highest SEGSNR improvements in all
conditions. In car noise conditions, for instance, compared
with the noisy inputs, the POW-SS and the AMP-SS,
the average SEGSNR improvements achieved by our
PRO-SS method amount to 3.83, 1.45 and 0.48 dB,
respectively. On average, in comparison of noisy inputs,
the PRO-SS yields a SEGSNR improvement of about
2.99 dB averaged across all tested conditions, which is
much higher than those of traditional algorithms (i.e.,
1.77 dB for the POW-SS, 2.62 dB for the AMP-SS, and
�0:56 dB for the SR-SS). Therefore, the PRO-SS generates
¼ 2:0 (POW-SS), the traditional amplitude SS output when b ¼ 1:0 (AMP-

b-order GSS (PRO-SS) output, in the car, babble and train noise conditions

Train

10 15 0 5 10 15

22 3.71 7.43 �3.06 0.18 3.67 7.40

11 4.98 7.55 �0.37 2.31 4.97 7.46

94 5.76 8.38 0.63 3.06 5.55 7.98

60 2.19 3.80 �0.78 0.56 2.03 3.56

36 6.03 8.48 1.05 3.42 5.85 8.19

hen b ¼ 2:0 (POW-SS), the traditional amplitude SS output when b ¼ 1:0

b-order GSS (PRO-SS) output, in the car, babble and train noise conditions

Train

10 15 0 5 10 15

0 4.36 2.86 13.00 9.40 6.37 4.01

9 3.28 2.35 8.02 5.90 4.22 2.94

7 3.03 2.29 6.42 4.96 3.79 2.90

4.42 3.86 6.48 5.68 5.01 4.45

1 2.96 2.21 5.98 4.85 3.67 2.87
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the output signal with the highest speech quality. This
achievement can be attributed to the utilization of the
time-varying and frequency-dependent spectral order b in
the proposed method. Moreover, from a careful observa-
tion of Table 1, we note that the SEGSNR improvements
achieved with the PRO-SS method in the car noise
conditions are higher than those in the babble and train
noise conditions. This is because the noise signal in the car
environment is much more stationary than the noise
signals in the babble and train noise conditions, and the
noise estimation that is performed in non-speech periods
in the current implementation is more suitable for
stationary noise.

Concerning the results of LSD given in Table 2, we can
observe that, except for the SR-SS, the three other tested
algorithms lead to a decrease of LSDs in all noise
conditions at all SNRs, especially at low SNRs. The SR-SS
gives higher LSD results, even compared with the noisy
input signals, especially in high SNR conditions, owing
to severe speech distortion. With respect to the tradi-
tional POW-SS and AMP-SS methods, the proposed
PRO-SS consistently yields the lowest LSDs for all condi-
tions and all SNRs. On average, compared to the noisy
inputs, the PRO-SS produces a reduction of LSD of
about 2.71 dB averaged across all tested conditions,
which is much higher than that obtained with the
traditional algorithms (i.e., 2.05 dB for the POW-SS,
2.57 dB for the AMP-SS and 1.43 dB for the SR-SS). That
is, the enhanced speech signal processed with the
adaptive PRO-SS method contains the lowest speech
distortion in comparison to those obtained with other
traditional SS methods. This achievement can specifically
be attributed to the use of high gains in speech-presence
periods due to high b values.
6.3. Subjective evaluation

6.3.1. Waveforms and spectrograms

The first subjective evaluation of the studied SS
algorithms was performed using waveforms and spec-
trograms. Typical examples of waveforms and spectro-
grams, corresponding to the sentence ‘‘Sekando arubamu
o happyou shitekara tuâ ni deru.’’, corrupted by car
noise at 10 dB, are plotted in Fig. 6. Fig. 6(b) shows that
the target speech signal is highly corrupted by the
car noise in all frequency bins and all time frames,
especially in the low frequencies. Fig. 6(c) shows that
the output of the traditional POW-SS (i.e., b ¼ 2:0) is
still characterized by high-level noise. This is because a
high gain function is exploited in the POW-SS, due to
the use of a relatively high value of b. The noise
components are further reduced by using the lower
gain function of the traditional AMP-SS (i.e., b ¼ 1:0)
when the b value is low, as shown in Fig. 6(d). The
SR-SS greatly reduces the noise components as well
as the speech components, leading to severe speech
distortion, as shown in Fig. 6(e). In contrast, Fig. 6(f)
demonstrates that our adaptive PRO-SS is able to
suppress the car noise components with very low
speech distortion in the time–frequency domain through
the use of the time-varying frequency-dependent spectral
order b.

6.3.2. Listening tests

The performance of the adaptive PRO-SS was also
evaluated using the listening tests. To reduce the length of
the subjective evaluations, only a subset of 12 sample
sentences, uttered by two female speakers and two male
speakers, were drawn and contaminated by car noise,
babble noise and train noise at two different SNR levels, 5
and 10 dB.

The resulting 72 noisy speech sentences were then
processed with the four algorithms: POW-SS, AMP-SS,
SR-SS and PRO-SS.

The listening tests involved eight volunteers of be-
tween 22 and 30 years of age. The test for each listener
lasted approximately 2 h, consisting of four 20-min
sessions, separated by a short 10-min break. The tested
speech materials were randomly presented to each
listener through a headphone, and the listeners were free
to adjust the sound volume to a comfortable level. The
listeners were instructed to rate the quality of the
enhanced output signals based on their preference in
terms of mean opinion score (MOS): 1 ¼ bad, 2 ¼ poor,
3 ¼ fair, 4 ¼ good and 5 ¼ excellent.

The MOS results presented in Table 3 show that among
the tested algorithms, the PRO-SS consistently produced
the highest MOS ratings in three noise conditions and at
two SNR levels. With respect to the POW-SS, the PRO-SS
offers on average approximately a one-point improve-
ment, and a 0.5-point improvement compared with
the AMP-SS averaged in all tested conditions. The
highest MOS result indicates that our adaptive PRO-SS
produces the enhanced signal of the highest speech
quality, being preferred by the listeners. Moreover,
from a careful observation of Table 3, we see that,
compared with other traditional SS algorithms, the
MOS rates achieved with the PRO-SS are reduced in the
babble and train noise conditions. This performance
reduction is due to the VAD-based noise estimation
approach and the highly non-stationary characteristics
of the babble and train noises. These results are consistent
with the objective results discussed in the previous
section.

The subjective MOS results were also statistically
analyzed by performing multiple paired compa-
risons (Tukey’s HSD) between the MOS ratings obtained
with speech signals enhanced by use of the three
tested SS algorithms. The results are listed in Table 4. In
the table, asterisks indicate significant differences
between the MOS scores of two enhanced signals
processed by the corresponding two algorithms. Table
entries denoted as ‘‘n.s.’’ stand for a non-significant
difference between the MOS results of two enhanced
signals.

Table 4 presents that the PRO-SS provides statistically
significant improvement of speech quality compared with
the POW-SS in all tested noise conditions. Compared to
the AMP-SS, significant improvements were observed in a
few conditions, the car and train noise conditions at 10 dB.
However, when compared to the SR-SS, no statistically
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car noise condition at the SNR of 10 dB. (c) Enhanced signal processed by the traditional power SS when b ¼ 2:0 (POW-SS). (d) Enhanced signal processed

by the traditional amplitude SS when b ¼ 1:0 (AMP-SS). (e) Enhanced signal processed by the traditional SS when b ¼ 0:5 (SR-SS). (f) Enhanced signal

processed by the proposed adaptive b-order GSS (PRO-SS).
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significant improvement was obtained with our proposed
algorithm in all tested conditions. This is possibly because
that the SR-SS produces the less musical noise compared
to the other standard approaches, and the involved speech
distortion was not exhibited through freely controlling the
volume.
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Table 3

Mean opinion score of the traditional power SS output when b ¼ 2:0

(POW-SS), the traditional amplitude SS output when b ¼ 1:0 (AMP-SS),

the traditional SS with b ¼ 0:5 (SR-SS), and of the proposed adaptive b-

order GSS (PRO-SS) output, in the car, babble and train noise conditions

Algorithm Car Babble Train

5 10 5 10 5 10

POW-SS 2.10 2.44 2.28 2.28 2.37 2.49

AMP-SS 2.71 3.09 2.64 2.89 2.70 2.95

SR-SS 2.65 2.98 2.70 3.00 2.67 3.02

PRO-SS 3.12 3.43 2.98 3.20 3.15 3.52

Table 4
Results obtained from the statistical analysis of MOS ratings for the

traditional power SS when b ¼ 2:0 (POW-SS), the traditional amplitude

SS when b ¼ 1:0 (AMP-SS), the traditional SS with b ¼ 0:5 (SR-SS) and

the proposed adaptive b-order GSS (PRO-SS)

Algorithm pairs Car Babble Train

5-dB 10-dB 5-dB 10-dB 5-dB 10-dB

(PRO-SS, POW-SS) * * * * * *

(PRO-SS, AMP-SS) n.s. * n.s. n.s. n.s. *

(PRO-SS, SR-SS) n.s. n.s. n.s. n.s. n.s. n.s.

Table entries denoted with asterisks ‘‘*’’ indicate significant differences

(p ¼ 0:05) between the MOS ratings of two signals enhanced by the two

corresponding algorithms; those denoted with ‘‘n.s.’’ indicate non-

significant differences between the MOS ratings.
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As a result, the proposed adaptive PRO-SS gives a
statistically significant performance improvement of
speech enhancement in almost all the tested environ-
ments compared with the traditional SS algorithms.
7. Discussion

In this section, we present a general discussion on
the traditional SS algorithms and the proposed adaptive
b-order GSS.

In the traditional SS algorithms, the spectral order b is
usually fixed to some constants (e.g., 1.0 and 2.0). The
traditional SS algorithms with the constant values of the
spectral order b demonstrate a certain degree of noise
reduction. One of merits of these algorithms is the low
computational cost, i.e., its simplicity in implementation.
Although an approach in which the value of b is updated
according to the frame SNR in a linear function has
recently been reported by You et al. [14], this approach
neglects the non-uniform effect of noise on speech signals
in the time–frequency domain and the non-linear depen-
dence of the value of b on the local SNR in real conditions.

In the proposed adaptive b-order GSS algorithm, the
spectral order b is adaptively determined according to
the local SNR in the time–frequency domain, which is
motivated by the following facts: the performance of the
GSS algorithm is dependent on the value of the spectral
order b, as analyzed in Section 3, and the background noise
affects the target signal non-uniformly in the time–
frequency domain, as discussed in Section 4.1. Compared
to the traditional SS algorithms with fixed b values, the
proposed adaptive b-order GSS algorithm demonstrates the
following beneficial characteristics: (1) the spectral order b
is time-varying and frequency-dependent due to the
change of acoustic environments; (2) the b value is
updated according to the local SNR, which indicates the
degree of corruption of target signal by the background
noise. Compared with You’s algorithm, the proposed
adaptive b-order GSS has the following advantages:
(1) the non-uniform effect of noise on speech signals in
the time–frequency domain is fully taken into account;
(2) the average change of the spectral order b with the local
SNR is described by a sigmoid function that is derived
through a data-driven optimization procedure, instead of
using a linear function. The effectiveness and superiorities
of the propose adaptive b-order GSS algorithm in reducing
noise signal and preserving the target speech signal have
been confirmed by comprehensive experiments.

To demonstrate the change of the spectral order b with
the local input SNR, as an example, the adaptation of the
spectral order b for the same utterance as that used in Fig. 3
is exemplified in Fig. 7. From Figs. 3 and 7, it can be seen that
with the proposed adaptive b-order GSS, the spectral order b
is adaptively adjusted to a small value at low SNR and to a
large value at high SNR, according to the local SNRs in the
time–frequency domain. The proposed adaptive b-order GSS
is superior in suppressing noise components and preserving
speech components under real-world noise conditions,
because it takes the frequency-dependent and time-varying
characteristics of the spectral order b into account.
8. Conclusion

In this paper, we first qualitatively analyzed the
performance of the b-order GSS and highlighted its
dependence on the value of the spectral order b, which
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provides the theoretical principle of this research. The
quantitative relationship between the optimal b value and
the local SNR was learned through a data-driven optimi-
zation procedure. We then proposed an adaptive b-order
GSS for speech enhancement in which the value of b is
adaptively updated according to the local SNRs in the
time–frequency domain as in the sigmoid function.
Comprehensive experimental results in various noise
conditions show that the proposed adaptive b-order GSS
outperforms the traditional SS methods in terms of both
objective and subjective speech quality measures.

In the current implementation, the spectrum of the noise
signal is estimated in the speech-absence periods with the
help of a voice activity detector. Future work on this
algorithm will include the integration of advanced noise
estimation approaches, such as the minimum statistic
tracking noise estimation approach [10] and/or the improved
minima controlled recursive averaging approach [26], as well
as a further improvement by considering the human
auditory-motivated mechanisms. Given the good preliminary
performance of the adaptive b-order GSS, future work in this
direction is expected to lead to additional promising
performance improvements in speech enhancement.
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