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Abstract: Spatial descriptions of the head-related transfer function
(HRTF) using spherical harmonics, which is commonly used for the
purpose, consider all directions simultaneously. However, in perceptual
studies, it is necessary to model HRTFs with different angular resolu-
tions at different directions. To this end, an alternative spatial represen-
tation of the HRTF, based on local analysis functions, is introduced.
The proposal is shown to have the potential to describe the local fea-
tures of the HRTF. This is verified by comparing the reconstruction
error achieved by the proposal to that of the spherical harmonic decom-
position when reconstructing the HRTF inside a spherical cap.
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1. Introduction

The head-related transfer function (HRTF) characterizes sound transmission from any
source position to the listener’s ear.1–3 HRTFs are, therefore, functions of the fre-
quency and direction of the source. While these two parameters are independent, this
letter focuses on the behavior of the HRTFs along different directions at a certain
frequency.

A common method to analyze HRTFs covering all directions is spherical har-
monic decomposition.4–6 Rather than examining the data direction-by-direction, this
approach characterizes the HRTFs using a set of expansion coefficients. The spherical
harmonic functions, which are called global functions, take significant values from all
spherical directions. Therefore, each coefficient corresponding to a particular spatial
frequency includes information from all directions and for a given temporal frequency.
This is suitable for global representation of the target data; however, it requires knowl-
edge of the HRTFs for a sampling that covers all directions. In addition, perceptual
studies suggest that the minimum audible angle that can be used to characterize human
sound localization depends on the source’s direction.7 The directional resolution of
HRTF required in binaural synthesis varies for all directions on the sphere around the
head.8 For these reasons, methods are needed for analyzing the HRTFs at different
resolutions for different directions.

This letter considers a method to represent HRTFs using local analysis func-
tions that take significant values over a local region; these functions are intended to
replace the global functions used in conventional methods. Inspired by the wavelet
transform, HRTFs are locally analyzed by a set of local functions, which were derived
from a generating function by changing its central directions and spatial resolutions. In
this manner, local HRTF features for different spatial frequencies can be modeled.
This proposal offers the possibility of a local representation of HRTF by choosing the
corresponding local analysis functions.
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2. Modeling of the HRTFs

A sound source direction, at a certain distance in spherical coordinates, is specified by
its azimuthal angle h 2 ½�180�; 180�� and elevation angle / 2 ½�90�; 90��. The spatial
part of an HRTF data set Hðh;/Þ is generally represented by using the following
weighted sum:

Hðh;/Þ ¼
X1
i¼1

ci � Wiðh;/Þ; (1)

where Wiðh;/Þ denotes the ith analysis function for i¼ 1, 2, 3,…; ci is the correspond-
ing coefficient in the decomposition. In practice, i must be truncated to a maximum
integer. The resulting decomposition can be written in matrix form as follows:

H ¼WCþ �; (2)

where H is a vector containing the samples for the HRTF at a given frequency and all
available directions. W is a matrix formed by sampling the analysis functions at these
directions. Vector C contains the corresponding expansion coefficients, and � is the
truncation error. The expansion coefficients can be obtained using the least squares
method, as follows:

Ĉ ¼WþH; (3)

where Wþ is the generalized inverse of matrix W.

2.1 Proposed local analysis functions on the sphere

Traditional methods to define the analysis functions are based on spatial principal
component analysis9 or spherical harmonic decomposition, in which matrix W contains
a set of spatial principal components or spherical harmonic functions correspondingly.
As an alternative, this study proposes a new set of local analysis functions that take
significant values over a local region on the sphere. These local functions consist of an
isotropic spatial window to select a local region, and a cosine on the sphere as an oscil-
lating function. The proposed function is defined as follows:

W0ðh;/Þ ¼ cos ½a � D0ðh;/Þ� � e�D2
0ðh;/Þ=2r2

; (4)

where W0ðh;/Þ is one of the proposed local analysis functions, with a center at
ðh0;/0Þ. D0ðh;/Þ denotes the great circle distance between two points on the unit
sphere, at angles ðh;/Þ and ðh0;/0Þ. The parameters a and r control the oscillation
rate and the width of the Gaussian window, respectively. By introducing a scaling fac-
tor S, a scaled analysis function is defined as follows:

W0;Sðh;/Þ ¼
ffiffiffiffi
S
p

cos ½a � S � D0ðh;/Þ� � e�S2�D2
0ðh;/Þ=2r2

; (5)

where a small value of S gives a coarse approximation capturing low spatial frequen-
cies, while large scales show the details capturing the high spatial frequencies.

In this study, HRTF data are represented as a weighted sum of the local func-
tions as defined in Eq. (5), for a set of scaling factors S‘, with scale index ‘¼ 1, 2,…,
in such a manner that

Hðh;/Þ ¼
X1
‘¼1

X
m2Dð‘Þ

c‘;m � Wm;‘ðh;/Þ: (6)

Here, c‘,m denote the expansion coefficient of scale index ‘ and center direction
ðhm;/mÞ. Sets Dð‘Þ are samplings of all directions with an average angular separation
defined according to the corresponding scaling factor. The expansion coefficients c‘,m
can be calculated using a least squares method, as described in Eq. (3).

3. Evaluation

3.1 Conditions of evaluation

The proposal is tested by applying it to a target HRTF data set calculated using the
Boundary Element Method for the SAMRAI (Koken) dummy head.10 The HRTF
data for sound sources at 1.5 m were calculated at frequencies between 93.75 and
20 000 Hz, with intervals of 93.75 Hz and samples at every 2� in azimuth and elevation
angles, for a total of 16 022 directions. This number of samples is high enough to
recover HRTFs at all directions within the audible frequency range.5
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The parameters in Eq. (5) are empirically set to a¼ 0.667 and r¼ 1. There are
numerous methods to define the sets Dð‘Þ;11 this letter uses a sampling of all directions
starting from the vertexes of an icosahedron that are regularly distributed on the
sphere. Next scale samplings are derived by adding a new vertex at the center of every
edge of the previous scale. In addition, a dyadic step is used to define the scaling fac-
tor, using the following equation:

S‘ ¼ 2‘�1: (7)

For an objective evaluation, a conventional measure of approximation error
in the frequency domain is defined using the Root-Mean-Squared (RMS) value.12 Here
a similar RMS value for measuring the approximation error in the spatial domain is
defined as

ERMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

j¼1

20 log10

jHsynth hj;/j
� �

j
jHtarget hj;/j

� �
j

" #2
vuut ; (8)

where Hsynthðhj ;/jÞ and Htargetðhj ;/jÞ are the reconstructed HRTF and target HRTF
at direction ðhj ;/jÞ, respectively; N is the total number of HRTF samples under study.

3.2 Local representation of HRTF

In this section, magnitudes of target HRTFs are approximated up to a certain scale
using the method proposed in Sec. 2. In Fig. 1, panel (a) illustrates the spatial patterns
of HRTF magnitude for all directions at 7.4 kHz; panels (b), (c), and (d), respectively,
show the results of the proposed analysis up to scales of 3, 4, and 5. The ERMS is 1.59,
1.07, and 0.43 dB, respectively. This indicates that high-scale approximations capture
finer details and generate smaller errors. More details regarding this representation for
all directions are provided in a previous work of this study.13

The expected advantage of the proposed function is its ability to accurately
represent a locality, which may allow for the local modeling of HRTFs over a region.
Here, a local representation of the HRTF is realized by selecting the local analysis

Fig. 1. (Color online) Target HRTF of the left ear (a) and its approximations [(b), (c), (d)] using the proposed
method for different maximum scales with every 2� in azimuth (from �180� to 180�) and elevation (from �90�

to 90�) angles.
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functions corresponding to the region. Because functions of lower scales have an influ-
ence over a larger area on the sphere, the low-scale functions are selected across a
wider area while only the high-scale functions close to the area under study are used.
More specifically, all the analysis functions whose radius of influence intersects the
area under study are selected for this local representation. The radius of influence of a
local function is defined as the distance between its center position (where it gets its
maximal value) and the position where its amplitude decreases to a low value (in this
study, this was set to 10% of the peak value).

An example of this regional representation is illustrated in Fig. 2. Panel (a) of
this figure shows an approximation up to scale 5 of a local region center at (90�, �48�)
on the sphere. The radius of this local region on the sphere is chosen to be a spherical
distance of 1.5 m, whose size is 2.888 steradians. Panel (b) shows the corresponding
coefficients of scale 5. There is a correspondence between the narrow deep notch of the
HRTF and the values of the scale 5 coefficients. This indicates that the expansion coef-
ficients have the potential to describe the local features of HRTFs. The approximation
error of this regional representation results in an ERMS of 0.32 dB.

HRTFs of two local regions (both are spherical caps with a size of 1.345 stera-
dians) for the ipsilateral [center at (90�, 0�)] and contralateral [center at (�90�, 0�)]
sides are also represented with the proposed method. As shown in Table 1, when
modeling up to a same scale, approximation at the contralateral side yields a bigger
RMS error than that at the ipsilateral side. The results clearly show the different diffi-
culties in modeling for these two sides.

A comparison is made between the ERMS generated by the proposed method
based on the local functions, and that generated by the conventional method4 based
on spherical harmonics for the local representation of the HRTFs at 7.4 kHz over the
region used in Fig. 2. Given a comparable number of analysis functions, modeling
with the proposed local functions up to scale 4 (number of local functions¼ 275) and
scale 5 (number of local functions¼ 937) yielded ERMS values of 0.68 and 0.32 dB,
respectively. These ERMS values are smaller than the corresponding values yielded
when using spherical harmonics up to order 16 (number of harmonics¼ 289) and order
30 (number of harmonics¼ 961) with ERMS values of 1.14 and 0.60 dB, respectively.

3.3 Approximation error for multiple frequencies

The proposed method is now applied to HRTFs of multiple frequencies, linearly dis-
tributed between 93.75 and 20 000 Hz. To compare the local representability of the
proposed method with the conventional method4 based on spherical harmonics, these
two methods are now applied to HRTFs at multiple frequencies. Although the method
that uses spherical harmonics is suitable for global representation, in nature, only the

Fig. 2. (Color online) Panel (a) shows the reconstructed left ear HRTF for a local region center at (90�, �48�)
with a size of 2.888 steradians on the sphere (below the white dotted line); panel (b) shows the corresponding
coefficients of scale 5.

Table 1. Approximation errors in terms of RMS values of local representations for the ipsilateral and contralat-
eral side.

Approximation Ipsilateral side error (dB) Contralateral side error (dB)

Up to scale 3 1.41 3.73
Up to scale 4 0.26 3.07
Up to scale 5 0.06 1.26
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local region center at (90�, �48�) is evaluated by the two methods. Moreover, for fair-
ness in the comparison, the cases were configured so that the number of parameters
was comparable. As a result, the proposed method up to scale 4 (number of local
functions¼ 275) and scale 5 (number of local functions¼ 937) is compared with the
conventional method up to, respectively, order 16 (number of spherical harmonic
functions¼ 289) and order 30 (number of spherical harmonic functions¼ 961). Figure 3
shows the result. It can be seen from the figure that the proposed method using the
local functions consistently yields smaller ERMS values than those yielded by the spheri-
cal harmonics method when the number of analysis functions is comparable.

4. Discussion and conclusion

In this letter, a new method to represent the spatial patterns of HRTFs is proposed;
this new method is based on a set of local analysis functions. These analysis functions
are centered in different directions and scaled so as to capture the local variations at
different resolutions. Numerical experiments confirm that high-scale approximations
can capture finer details. The proposal can reconstruct HRTFs over a compact region
by appropriately choosing the analysis functions. Therefore, it can achieve the
direction-dependent spatial resolution needed for accurate sound localization. A local
representation of HRTF at 7.4 kHz shows a correspondence between the values for
high-scale coefficients and the local features of the HRTFs. This suggests that the
expansion coefficients have the potential to describe the local features of HRTFs. The
correspondence may be improved by defining analysis functions with lower redun-
dancy; this will be a future step in this study. Finally, given a comparable number of
analysis functions, the proposed method yields smaller RMS error values when repre-
senting an HRTF spatial pattern of a local region than those yielded by a conventional
modeling technique based on spherical harmonics.
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