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Abstract: This paper derives a continuous-space model to describe variations in magnitude of
complex head-related transfer functions (HRTFs) along angles and radial distances throughout the
horizontal plane. The radial part of this model defines a set of horizontal-plane distance-varying filters
(HP-DVFs) that are used to synthesize the HRTFs for arbitrary sound source positions on the
horizontal plane from initial HRTFs obtained for positions on a circular boundary at a single distance
from the head of a listener. The HP-DVFs are formulated in terms of horizontal-plane solutions to the
three-dimensional acoustic wave equation, which are derived by assuming invariance along elevation
angles in spherical coordinates. This prevents the free-field inaccurate distance decay observed when
assuming invariance along height in cylindrical coordinates. Furthermore, discontinuities along the
axis connecting the ears are also overcome, which appear when assuming invariance along the polar
angle in interaural coordinates. This paper also presents a magnitude-dependent band-limiting
threshold (MBT) for restricting the action of filters to a limited angular bandwidth, which is necessary
in practice to enable discrete-space models that consider a finite number of sources distributed on the
initial circle. Numerical experiments using a model of a human head show that the overall synthesis
accuracy achieved with the proposed MBT outperforms the one achieved with the existing frequency-
dependent threshold, especially at low frequencies and close distances to the head.
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1. INTRODUCTION

Head-related transfer functions (HRTFs) are a central

tool for the realistic, binaural presentation of three-dimen-

sional auditory spaces [1,2]. Their aim is to characterize

the scattering of sound due to the external anatomy of a

listener, mainly determined by the shape of their pinna,

head, and body. HRTFs are represented by linear filters

relating the position of a sound source and the sound

pressure generated by that source at the ears of the listener

[3].

HRTFs contain the auditory cues that are essential to

perceive the direction of sound sources in anechoic

conditions. Auditory cues for the perception of distance

are also present in the HRTFs for sources within 1 m of the

listener’s head [4–6]. Examples of numerical simulations

of circular datasets for left-ear HRTFs at far and near

distances are shown in Fig. 1. The trend of ipsilateral

spectral features at the far distance to concentrate around

the ear’s direction (� ¼ 90�) in the near distance illustrates

the so-called acoustic parallax effect [6,7]. The decrease in

energy of contralateral spectral features at the near distance

illustrates the prominence of the head shadowing effect [5].

Such distance cues are particularly useful when presenting

auditory scenes comprised of lateral sounds near the heads

of the listeners [8].

Binaural presentation would ideally require knowing

the HRTFs for all points in three-dimensional space.

However, measuring or calculating these HRTF datasets

is a complex and time consuming task. A physically-

motivated synthesis method described in [9–11] makes it

possible to calculate the HRTFs for arbitrary positions in

space, once an initial HRTF dataset for discrete positions

on a sphere surrounding the listener is given. Prior
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knowledge about the HRTFs at the target positions is not

required when applying this model-based method. This

is a useful result, since spherical datasets are typically

obtained for only one far distance [12]. Nevertheless,

optimally distributing sound sources on the sphere is a

non-trivial problem [13,14], and obtaining the HRTFs for

all required initial positions might not be feasible for many

applications.

In many applications, it is enough to present sounds

from positions on a horizontal plane at the height of the

listener’s ears, even though this may not be enough to

present complex scenes such as those including reverber-

ations. The reason behind this lies in the fact that real

life sound sources are often located on or close to this

horizontal plane. Furthermore, the human auditory system

can resolve sounds more accurately in this plane [16].

Consequently, horizontal-plane virtual auditory displays

would be an important use case. Obtaining HRTFs for a

dense set of positions throughout the plane, however, can

still be very demanding and time consuming. It would be

useful, then, if a method similar to the one presented in

[9–11] could be applied to synthesize the HRTFs for

arbitrary positions on the horizontal plane, once an initial,

circular HRTF dataset is known at a single (typically far)

distance.

The synthesis approach in [9–11] relies on the principle

of acoustic reciprocity [17] to consider HRTF datasets as

sound pressure fields generated by a point source at the ear.

This approach originates from three-dimensional solutions

to the acoustic wave equation formulated in spherical

coordinates, where solutions can be separated into a radial

and an angular part [18, Chapter 6]. The angular part

defines an orthonormal basis on the sphere, which is used

to represent the directional information in the HRTFs that

will remain unchanged. The radial part is then used to

formulate distance-varying filters in the represented do-

main. Unfortunately, ambiguous results are obtained when

deriving methods for the horizontal plane by simply

restricting the spherical representation to a circle [19,20].

This is because, even when considering only a plane, sound

still propagates along three dimensions.

Two approaches for horizontal-plane synthesis of

HRTFs that take into consideration the spatial propagation

of sound have been explored in [21]. Both rely on finding

horizontal-plane solutions to the three-dimensional acous-

tic wave equation by assuming sound fields that are

invariant along a spatial coordinate [18, Chapters 4 and 6].

The first approach assumes invariance along height in

cylindrical coordinates. This assumption is equivalent to

considering vertical, infinite-length line sources of sound.

Approximate solutions for the case of finite-length line

sources have been proposed in [22] based on the stationary

phase method [18, pp. 137–140]. However, these solutions
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(a) Lateral and front views of the symmetric head model used
in this paper for numerical experiments. The grid consists of
14,096 points with an average cell length of 5.1 mm.

(b) Source positions in circular boundaries.

(c) HRTFs at r0 =150 cm.

(d) HRTFs at r =25  cm.

Fig. 1 Two circular HRTF datasets for the left ear
(�0 ¼ � ¼ 90�) calculated with the boundary element
method (BEM) [15]. Azimuthal angles �0 and � are
measured from the positive x-axis, which indicates
the front position (�0 ¼ � ¼ 0�). Magnitudes indicate
the difference in sound pressure level at the left ear
compared to that which would be observed at the
position of the head’s center in free-field conditions.
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are only accurate at a specified distance from the origin.

In either way, the main limitation of modeling in

cylindrical coordinates is the impossibility of considering

the spherical symmetry of sound field propagation due to

external sound sources. As a result, the free-field pressure

decay along radial distance towards the head’s center can

not be accurately predicted. The accurate prediction of

such distance decay pattern is an important requirement

because it matches the distance decay due to point sources

of sound, which are the kind of sources used in the

definition of HRTFs.

The second approach attempts to account for the

spherical, radial convergence towards the head’s center by

assuming invariance along vertical angles measured from

the horizontal plane, which are described by the polar angle

� in the interaural coordinate system shown in Fig. 2(a).

For a given distance, this assumption is equivalent to

considering vertical, circular sources of sound that are

parallel to the median plane (xz-plane), and whose radii

decrease as they move away from this plane. This leads to a

method that requires the division of the horizontal plane

into two regions, in front of and behind the listener,

delimited by an axis connecting the ears’ canals (y-axis). In

practice, this can be understood as considering a semi-

circular array of circular sources (in front or behind), as

illustrated in Fig. 3(a) for the frontal case. Nevertheless,

this method yields results on the front and back regions that

take different values along the interaural axis. Disconti-

nuities on the lateral sides are hence inevitable, precisely

where the distance cues are more prominent [8].

In this paper, we properly account for the spherical,

radial convergence towards the head’s center by assuming

invariance along the elevation angle � defined in the

spherical coordinate system shown in Fig. 2(b). This

assumption is equivalent to considering vertical, semi-

circular sources of sound that connect points of equal

azimuthal angle � and are terminated by the north and

south poles. The vertical semicircles have equal radii; they

are also continuously and uniformly distributed around the

z-axis. In practice, this can be interpreted as considering

a circular array of semicircular sources, as illustrated in

Fig. 3(b). The underlying assumption therefore leads to

solutions to the acoustic wave equation that uniformly

consider the horizontal plane as a whole. Consequently,

there are no singularities or discontinuities in the results.

The angular part of the solutions results in a suitable basis

for representing directional information on full horizontal

circles. The radial part is used to formulate a set of

distance-varying filters to be applied in the represented

domain. Our solutions, hence, define a method to synthe-

size HRTFs at arbitrary distances on the horizontal plane,

once a circular HRTF dataset is known.

Another issue addressed in this paper deals with

angular resolution in practical filter implementation. Con-

tinuous, circular distributions of sources are necessarily

considered when deriving distance-varying filters from

analytic solutions to the acoustic wave equation. Yet HRTF

datasets are obtained in practice for discrete distributions

of sources. Relating discrete and continuous distributions

requires additional assumptions. In particular, following

the Nyquist sampling theorem on the circle [23], we

consider that continuous distributions have finite angular

bandwidths. Implementations therefore require the estab-

lishment of thresholds to restrict the action of distance-

varying filters to the corresponding angular bandwidth. We

examine an existing threshold [24] to limit the angular

bandwidth according to frequency and find that this

traditional threshold does not ensure accurate results,

especially at low frequencies and positions close to the

head. To cope with this problem, we propose a threshold

to limit the angular bandwidth in accordance with the

magnitude decay of spherical wavefronts along distance in

free-field.

The remainder of this paper is organized as follows.

Section 2 reviews the method in interaural coordinates.

Section 3 presents our proposal in spherical coordinates.

Section 4 addresses the issue on angular bandwidth

limitation. Section 5 presents and discusses the results.

Conclusions are stated in Sect. 6.

(a) Interaural coordinates. (b) Spherical coordinates.

Fig. 2 Two ways of describing sound source positions
used to characterize HRTF datasets. The front position
is along the positive x-axis. The ears of the listener are
along the y-axis.

(a) Semicircular array of circular
sources in interaural coordinates.

(b) Circular array of semicircular
sources in spherical coordinates.

Fig. 3 Arrays of sound sources on the horizontal plane.
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2. SYNTHESIS METHOD IN
INTERAURAL COORDINATES

In this section, we discuss the fundamentals of the

synthesis method used in [21] when continuous distribu-

tions of sources are assumed. This method is formulated on

the coordinate system shown in Fig. 2(a), where a point in

space is represented by its radial distance r, lateral angle

� 2 ½� �
2
; �

2
�, and polar angle � 2 ½��; ��. These coordi-

nates are a suitable choice for representing the underlying

assumption that the interaural HRTF (the left ear HRTF

divided by the right ear HRTF) is constant along polar

angle � for the hypothetical case of a spherical head. This

method can hence be formulated by solving the acoustic

wave equation in interaural coordinates, where sound

fields are assumed to be invariant along vertical circles

parallel to the median plane (xz-plane) and centered on the

interaural axis (y-axis). An overview of this method is

illustrated in Fig. 4.

2.1. Sound Field Propagation in Interaural Coordi-

nates

By � intðr; �; �; tÞ / RðrÞAð�ÞBð�Þ expð�j!tÞ, we de-

note a time-harmonic sound pressure field with angular

frequency ! ¼ 2� f and independent spatial variables,

where j ¼
ffiffiffiffiffiffiffi
�1
p

. The upper index refers to the interaural

coordinate system. Sound fields of this form simplify the

three-dimensional wave equation to a sum of three ordinary

differential equations such as the ones shown in the

following expression [18, p. 183]:

1

R

d

dr
r2 d

dr

� �
R

þ
1

cos�

1

A

d

d�
cos�

d

d�

� �
Aþ

1

cos2 �

1

B

d2

d�2
B|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼�nðnþ1Þ

¼ �r2 !
2

c2
;

ð1Þ
where c is the speed of sound in air.

Solutions to (1) on the horizontal plane (xy-plane) are

obtained by setting a separation constant n and assuming

Bð�Þ is constant. The term involving Bð�Þ thus vanishes.

The term involving Að�Þ results in a Legendre differential

equation, whose solution Að�Þ ¼ Pnðsin�Þ is the Legendre

polynomial of order n 2 N. The radial term thereof

produces a Bessel differential equation; one of its solutions

is given in terms of the Hankel function of the second

kind and half-integer order H
nþ1

2
ð!
c
rÞ. The radial term

RðrÞ ¼ r�
1
2H

nþ1
2
ð!
c
rÞ is known as the spherical Hankel

function.

Sound pressure fields can be defined by the general

solution to (1) in the frequency domain according to

� intðr; �; !Þ ¼
X1
n¼0

Cint
n ð!Þr

�1
2H

nþ1
2

!

c
r

� �
Pnðsin�Þ: ð2Þ

By virtue of the orthonormality property for Pn, the

coefficients Cint
n can be calculated using the following

expression:

Cint
n ð!Þ ¼

nþ
1

2

r�
1
2H

nþ1
2

�
!

c
r

� Z �
2

��
2

� intðr; �; !ÞPnðsin�Þ cos�d�:

ð3Þ

Note that distance and angle variations in (2) are fully

represented by RðrÞ and Pn, respectively. Coefficients Cint
n

hence exclusively depend on ! and (3) holds for any other

distance.

Given the independence of Cint
n with respect to distance,

the relation between the sound pressure fields at two

different distances r and r0 can be formulated as follows:

� intðr; �; !Þ ¼
X1
n¼0

nþ
1

2

� �1
2

Pnðsin�Þ
r�

1
2H

nþ1
2

�
!

c
r

�

r
�1

2
0 H

nþ1
2

�
!

c
r0

�
2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Filters: Dint

n ðr; r0; !Þ

� nþ
1

2

� �1
2
Z �

2

��
2

� intðr0; �0; !ÞPnðsin�0Þ cos�0d�0:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fourier-Legendre transform along lateral angle: Lf�intg

ð4Þ

Here, the term on the second line is a Fourier-Legendre

transform along �0, the term above in brackets defines

distance-varying filters in a horizontal half-plane, and the

HRTFs on the circle of radius r0

HRTFs in the frontal
semicircle of radius r0

Fourier-Legendre transform
along lateral angle

Lateral-angle spectrum at r0

Distance-varying filters
from r0 to r by half-integer

order Hankel functions

Lateral-angle spectrum at r

Inverse
Fourier-Legendre transform

HRTFs in arbitrary
directions on the frontal

semicircle of radius r

HRTFs in the rear
semicircle of radius r0

Fourier-Legendre transform
along lateral angle

Lateral-angle spectrum at r0

Distance-varying filters
from r0 to r by half-integer

order Hankel functions

Lateral-angle spectrum at r

Inverse
Fourier-Legendre transform

HRTFs in arbitrary
directions on the rear
semicircle of radius r

Fig. 4 Block diagram of the synthesis method in
interaural coordinates [21].
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sum of Legendre polynomials on � is an inverse Fourier-

Legendre transform.

The principle of reciprocity [17] implies that HRTF

datasets can also be characterized by the sound pressure

around the listener due to a point source at each of their

ears. Applying (4) to these datasets then defines the

synthesis method shown in Fig. 4. Given that lateral angles

are in ½� �
2
; �

2
�, Fourier-Legendre transforms need to act on

separate datasets defined over two semicircles in front and

behind the listener. Equation (4) first decomposes the

dataset using an integral over �0 and then reconstructs it at

a target angle �. It should be noted that these two variables

are independent.

2.2. Fourier-Legendre Analysis of Distance Variation

To investigate the relative variation over distance of

circular HRTF datasets, we calculate the ratio between

normalized Fourier-Legendre transforms. We analyzed the

datasets in Figs. 1(c) and 1(d) to obtain the illustrative

results shown in Fig. 5. General remarks are as follows.

i) In Figs. 5(a) and 5(b), it can be appreciated that

most of the energy in the Fourier-Legendre transform

of the datasets is concentrated in the lower lateral-

angle modes (�-modes). The transition between

�-modes of high and low energy increases as

frequency increases.

ii) In the distance variation patterns shown in Fig. 5(c),

which were calculated based on the ratio between the

Fourier-Legendre transforms illustrated in Figs. 5(a)

and 5(b), it is observed that the distance variation

patterns corresponding to high-energy �-modes are

relatively simple as opposed to the ones correspond-

ing to low-energy modes.

iii) The nature of the Fourier-Legendre transform in (4)

implies that frontal and rear regions must be analyzed

separately because �0 2 ½� �
2
; �

2
�. These analyses are

respectively shown in the top and bottom panels of

Fig. 5. Furthermore, distance variations follow differ-

ent patterns in each of these two regions.

3. SYNTHESIS METHOD IN
SPHERICAL COORDINATES

In this section, we detail our method to synthesize the

HRTFs at arbitrary points on the horizontal plane from

HRTF datasets given on a single circular boundary.

Continuous distributions of sources are assumed through-

out this section. The proposal is formulated on the

coordinate system shown in Fig. 2(b), where a point in

space is represented by its radial distance r, azimuthal

angle � 2 ½��; ��, and elevation angle � 2 ½� �
2
; �

2
�. The

underlying idea is to generate spherical datasets by

replicating circular datasets along semicircles connecting

points of equal azimuth � and terminated by the north and

south poles. Semicircles of this type define the meridians.

Our method thus originates from an equivalent problem

consisting of solving the acoustic wave equation on these

coordinates, under the assumption that sound fields are

invariant along meridians. Although this assumption can

appear one step removed from physical reality when

considering the three-dimensional space, it is accepted here

for the practical purpose of having a uniform distribution of

semicircular sources on a circle, as shown in Fig. 3(b). This

(a) | {HRTF(r0)}| (b) | {HRTF(r)}| (c)
|
||

|
||| |

{HRTF(r)}
{HRTF(r0)}

ˆ ˆ

Fig. 5 Analysis of distance variation between the datasets shown in Figs. 1(c) and 1(d), from r0 ¼ 150 cm to r ¼ 25 cm,
using the Fourier-Legendre transform L defined in (4). Frequencies and lateral-angle modes are depicted along the
horizontal and vertical axes, respectively. The colorbars in panels (a) and (b) correspond to magnitudes of normalized
Fourier-Legendre transforms L̂, while the colorbar in (c) corresponds to magnitudes of ratios between non-normalized
Fourier-Legendre transforms L at r and r0.
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assumption allows us to derive a set of distance-varying

filters that takes into consideration the radial symmetry of

acoustic propagation towards the head center. An overview

of our method is illustrated in Fig. 6.

3.1. Sound Field Propagation in Spherical Coordi-

nates

By � sphðr; �; �; tÞ / RðrÞ�ð�Þ	ð�Þ expð�j!tÞ, we de-

note a sound field varying independently along each one of

its coordinates. The upper index refers to the spherical

coordinate system. Sound fields of this form also decouple

the wave equation into a sum of ordinary differential

equations [18, pp. 183]:

1

R

d

dr
r2 d

dr

� �
Rþ

1

cos2 �

1

�

d2

d�2
�|fflfflfflfflffl{zfflfflfflfflffl}

¼�m2

þ
1

cos�

1

	

d

d�
cos�

d

d�

� �
	 ¼ �r2

!2

c2
: ð5Þ

We look for solutions to (5) on a horizontal plane using

separation constant m. We assume that 	ð�Þ, the elevation-

dependent portion of the solution, is constant. The term

involving 	ð�Þ thus vanishes and the azimuthal solution

oscillates according to �ð�Þ ¼ expð jm�Þ, where m 2 Z.

We deal with the remaining radial term in (5) using

auxiliary function RðrÞ ¼ r
1
2RðrÞ to obtain the following

Bessel differential equation for it:

d2

dr2
Rþ

1

r

d

dr
Rþ

!2

c2
�

�
m2

cos2 �
þ

1

4

�
r2

2
6664

3
7775R ¼ 0: ð6Þ

For the sake of simplicity, we denote the term inside the

parentheses by a parameter 
 as follows:


2 ¼
m2

cos2 �
þ

1

4
; ð7Þ

where � 2 ð� �
2
; �

2
Þ. Solutions to (6) can now be obtained in

terms of the well-known Bessel functions, among which

we choose RðrÞ ¼ H
ð!c rÞ, the Hankel function of the

second kind, and fractional order 
. The radial solution

finally results in RðrÞ ¼ r�
1
2H
ð!c rÞ.

We can thus define the sound pressure field in a

horizontal plane in terms of our general solution to (5) in

the frequency domain in such a way that

� sphðr; �; !Þ ¼
X1

m¼�1
Csph
m ð!Þr

�1
2H


!

c
r

� �
expð jm�Þ: ð8Þ

We interpret this result as an incoming converging wave

due to a radiating semicircular arc along a meridian. As a

consequence of the orthonormality of complex exponen-

tials, coefficients Csph
m remain defined as follows:

Csph
m ð!Þ ¼

1

2�r�
1
2H


�
!

c
r

� Z �

��
� sphðr; �; !Þ expð�jm�Þd�:

ð9Þ

Note that distance and angle variations in (8) are fully

described by RðrÞ and expð jm�Þ, respectively. Coefficients

Csph
m hence depend on ! only and (9) holds for any

distance.

Because coefficients Csph
m are invariant with respect to

distance, the sound pressure fields at two different distances

r and r0 are finally linked according to the following

expression:

� sphðr; �; !Þ ¼
X1

m¼�1

1

2�

� �1
2

expð jm�Þ
r�

1
2H


�
!

c
r

�

r
�1

2
0 H


�
!

c
r0

�
2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Filters: Dsph

m ðr; r0; !Þ

�
1

2�

� �1
2
Z �

��
� sphðr0; �0; !Þ expð�jm�0Þd�0:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fourier transform along azimuthal angle: F f�sphg

ð10Þ

Here, the term in the second line represents a Fourier

transform along �0. The term in brackets defines the set of

horizontal-plane distance-varying filters (HP-DVF) with

parameter 
 defined in (7). Note that 
 can correspond to

horizontal planes at different elevation angles � 2 ð� �
2
; �

2
Þ.

For the goals of this paper, we delimit our discussion

hereafter to the case � ¼ 0. Finally, the sum of complex

exponentials on � describes an inverse Fourier transform.

Applying (10) to HRTF datasets defines the synthesis

method shown in Fig. 6. Because azimuthal angles are in

½��; ��, Fourier transforms act on datasets defined on

complete circular boundaries around the listener. Equa-

tion (10) first decomposes the dataset using an integral over

�0 and then reconstructs it at a target angle �. Note that

these two variables are independent.

HRTFs on the circle of radius r0

Fourier transform along azimuthal angle

Azimuthal-angle spectrum at r0

Distance-varying filters from r0 to r
by fractional order Hankel functions

Azimuthal-angle spectrum at r

Inverse Fourier transform

HRTFs in arbitrary directions at r

Fig. 6 Block diagram of the synthesis method in
spherical coordinates.
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3.2. Fourier Analysis of Distance Variation

Similarly to the examples in Sect. 2.2., those shown in

Fig. 7 are based on the ratio between the Fourier trans-

forms of the datasets shown in Figs. 1(c) and 1(d). General

remarks are as follows.

i) In Figs. 7(a) and 7(b), it can be observed that most of

the energy in the Fourier transform of the datasets is

concentrated in the lower azimuthal-angle modes

(�-modes). The transition between �-modes of high

and low energy increases as frequency increases. The

decay of energy along the transition occurs faster

than in the Fourier-Legendre domain, as can be

observed when comparing with the examples shown

in Figs. 5(a) and 5(b).

ii) In the distance variation patterns shown in Fig. 7(c),

which were calculated based on the ratio between the

Fourier transforms illustrated in Figs. 7(a) and 7(b), it

can be appreciated that the distance variation patterns

corresponding to high-energy �-modes of the datasets

are relatively simple, in contrast with the ones

corresponding to low-energy modes.

iii) Because Fourier transforms are applied on full

circular boundaries at once, the distance variations

between two circular datasets are described by a

single set of patterns.

4. BANDWIDTH-LIMITED
DISTANCE-VARYING FILTERS

In this section, we address an issue regarding practical

implementation of distance-varying filters. Continuous

distributions of sources were considered in Sects. 2 and 3

when formulating distance-varying filters. Yet HRTF

datasets are obtained for discrete distributions of finite

angular resolution and, hence, representations of datasets

on transform domains are accurate in a limited angular

bandwidth. Implementations thus require thresholds to

restrict the action of distance-varying filters to a limited

angular bandwidth.

Figures 5 and 7 show that most of the energy in angular

spectra of datasets is concentrated in low angular modes

up to a frequency-dependent high-to-low energy transition.

Small values taken at higher modes would, in practice, lead

to a low signal-to-noise ratio that can negatively impact the

results; this is in agreement with the ill-conditioned nature

of the acoustic propagation problem [18, pp. 291–293].

Furthermore, the behavior of these low-energy components

at different distances follows a complex pattern that may be

difficult to capture in a general model. For these reasons,

we focus our analysis on limiting the angular bandwidth so

as to preserve the high-energy modes only.

Limited angular bandwidths are modeled by truncating

the sums along modal indices n in (4) and m in (10) to a

finite number of terms. In [24], a frequency-dependent

threshold to decide bounds for modal indices was deduced

by using the asymptotic expansion of spherical Hankel

functions for large orders. In general, bounds L for n � bLc
or jmj � bLc, beyond which the distance-varying filters are

set to zero, can be defined as follows [24]:

L ¼
1

ln

�
r

rh

� ln

�
r

rh

�3
2

�
r

rh
� 1

�3
2

�

0
BBBB@

1
CCCCAþ 1

2
66664

3
77775

4
8>>>>><
>>>>>:

(a) | {HRTF(r0)}|ˆ (b) | {HRTF(r)}|ˆ (c) {HRTF(r)}
{HRTF(r0)}

|
|||

|
|||

Fig. 7 Analysis of distance variation between the datasets shown in Figs. 1(c) and 1(d), from r0 ¼ 150 cm to r ¼ 25 cm,
using the Fourier transform F defined in (10). Frequencies and azimuthal-angle modes are depicted along the horizontal
and vertical axes, respectively. The colorbars in panels (a) and (b) correspond to magnitudes of normalized Fourier
transforms F̂ , while the colorbar in (c) corresponds to magnitudes of ratios between non-normalized Fourier transforms F
at r and r0.
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Here, � is a specified approximation error to represent

spatial information inside the smallest radius rh containing

the head, due to a source at a distance r. Examples of filters

designed using this threshold, for � ¼ 10�5, rh ¼ 15 cm

and r ¼ 25 cm, are shown in Figs. 8(a) and 9(a). Filters

designed with this threshold attempt to fully approximate

distance-varying patterns, such as the ones shown in

Figs. 5(c) and 7(c), by further including information on

spectral regions comprising high modes at low frequencies.

Nevertheless, resulting filters have the risk of overempha-

sizing components of low signal-to-noise ratio, as angular

spectra of initial datasets at far distances contain low-

energy components in these spectral regions.

To cope with this problem, we first observe that the

distance-varying filters in (4) and (10) have magnitude

responses that are monotonically increasing functions of

relative distance, and of n or m, respectively. We then

propose to restrict their angular bandwidths by clipping

their magnitude responses according to the ratio between

the surface area of the spheres at r0 and r. In addition, to

generalize the distance-varying filters to work in both

the far and near fields, we scale the filters by a factor r
r0

.

Such scaling is equivalent to the use of Hankel functions

normalized by the magnitude of their far-field asymptotic

forms [10] or by the magnitude of the near-field radiation

of a point source [25]. We formulate a magnitude-depend-

ent band-limiting threshold (MBT) according to the

following expression:

D̂ðr; r0; !Þ ¼
r

r0
Dðr; r0; !Þ if jDðr; r0; !Þj �

r20
r2

,

0 else.

8<
: ð12Þ

(a) Frequency-dependent threshold. (b) Magnitude-dependent threshold.

Fig. 9 Proposed distance-varying filters in spherical coordinates D̂sph
m ðr0; rÞ from r0 ¼ 150 cm to r ¼ 25 cm, whose

directional bandwidths have been limited according to the frequency-dependent threshold in (11) and proposed
magnitude-dependent threshold in (12). Colorbars indicate magnitude gains.

(a) Frequency-dependent threshold. (b) Magnitude-dependent threshold.

Fig. 8 Distance-varying filters in interaural coordinates D̂int
n ðr0; rÞ from r0 ¼ 150 cm to r ¼ 25 cm, whose directional

bandwidths have been limited according to the frequency-dependent threshold in (11) and proposed magnitude-dependent
threshold in (12). Colorbars indicate magnitude gains.
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Here, D̂ is a distance-varying filter with limited angular

bandwidth and D is one of the filters defined in (4) or (10).

Examples of filters designed with this threshold, for the

methods in interaural coordinates and spherical coordi-

nates, are respectively shown in Figs. 8(b) and 9(b), where

it is observed that the action of the filters is properly

restricted to the spectral regions of high-energy compo-

nents. Magnitude gains at the edges correspond to thresh-

olds
r2
0

r2
in (12), while staircase patterns are due to using a

frequency resolution of 93.75 kHz, which in turn corre-

spond to using 512 samples and a sampling frequency of

48 kHz. Note that no prior knowledge on the target HRTFs

is required when using (11) or (12).

5. EVALUATION OF THE
SYNTHESIS ACCURACY

In this section, we numerically compare the perform-

ances of the method in the interaural coordinates defined

in (4) and the proposal in the spherical coordinates defined

in (10).

5.1. Objective Measures of Overall Accuracy

Evaluations were performed by comparing synthesized

datasets denoted by Ĥ and target datasets denoted by H.

Overall accuracy along frequency was calculated by a

logarithmic spectral distance that has been shown to be

suitable for predicting audible differences between mea-

sured and synthesized HRTFs [26]. We refer to this

distance as the spectral distortion (SD) in decibels and

write it as follows [26]:

SDð�Þ ¼
1

f2 � f1

Z f2

f1

20 log10

Ĥð�; f Þ
Hð�; f Þ

�����
�����

" #2

d f

2
4

3
5

1
2

: ð13Þ

Overall accuracy along angles, described for conven-

ience by azimuthal angle �, was calculated based on

circular correlations (CC) that provide a good measure for

the similarities of the directional patterns of Ĥ and H,

independently of a possible gain mismatch [11]. Normal-

ized CC is defined as follows [11]:

CCð f Þ ¼

Z �

��
Ĥð�; f ÞHð�; f Þd�

Z �

��
jĤð�; f Þj2d� �

Z �

��
jHð�; f Þj2d�

� �1
2

; ð14Þ

with the overbar denoting the complex conjugate.

5.2. Conditions of the Evaluation

Using the head model described in Fig. 1(a) and the

boundary element method (BEM) in [15], we calculated an

initial HRTF dataset at a radius r0 ¼ 150 cm and target

datasets at radii r ranging from 15 to 149 cm in regular

spacing intervals of 1 cm. Every dataset was calculated for

360 sound sources equiangularly distributed on the hori-

zontal plane. Such a high angular resolution allowed us to

focus the study on the distance effects. We considered

frequency bins ranging from f1 ¼ 93:75 Hz to f2 ¼ 19;875

Hz, with a sampling frequency of 48 kHz. Because the head

model is symmetric, only the left ear was examined.

5.3. Results

To illustrate the local performance first, we present

examples of HRTF datasets synthesized in interaural and

spherical coordinates in Figs. 10 and 11, respectively.

Discontinuous results along � ¼ �90� can be observed in

Figs. 10(a) and 10(b). This is because Fourier-Legendre

transforms are applied along two hemi-circumferences

separated by the interaural axis and, unfortunately, differ-

(a) Frequency-dependent threshold. (b) Magnitude-dependent threshold.

Fig. 10 HRTF datasets at r ¼ 25 cm synthesized with the distance varying filters in interaural coordinates. Directional
bandwidths were limited according to the frequency-dependent threshold in (11) and the proposed magnitude-dependent
threshold in (12).
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ent values are obtained when approaching this axis. Such a

drawback is not present in the results obtained with the

proposal in spherical coordinates, as can be observed in

Figs. 11(a) and 11(b), as Fourier transforms are applied

along all azimuth angles at once.

Overall accuracies obtained with the method in

interaural coordinates, calculated with (13) and (14), are

displayed in Fig. 12. It can be observed that the filters

designed with the frequency-dependent threshold yield

poor overall accuracies at low frequencies and close

distances. These limitations are overcome when using

filters designed with the proposed magnitude-dependent

threshold.

Resulting overall accuracies of the proposal in spher-

ical coordinates, calculated with (13) and (14), are

displayed in Fig. 13. Notwithstanding the poor overall

accuracies at low frequencies and close distances yielded

by the frequency-dependent threshold, the overall perform-

(a) Frequency-dependent threshold. (b) Magnitude-dependent threshold.

Fig. 12 Overall accuracies achieved with the distance-varying filters in interaural coordinates. The angular bandwidths of
filters were limited according to the frequency-dependent threshold in (11) and proposed magnitude-dependent threshold
in (12). Overall accuracies were calculated using the spectral distortion (SD) in (13) and normalized circular correlation
(CC) in (14).

(a) Frequency-dependent threshold. (b) Magnitude-dependent threshold.

Fig. 11 HRTF datasets at r ¼ 25 cm synthesized with the proposed distance varying filters in spherical coordinates.
Directional bandwidths were limited according to the frequency-dependent threshold in (11) and the proposed magnitude-
dependent threshold in (12).
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ance in spherical coordinates under this condition outper-

forms the method in interaural coordinates. Performance

is further improved when using filters designed with the

proposed magnitude-dependent threshold nonetheless. In

this case, our proposal performed better than the method in

interaural coordinates.

In Fig. 13(b), high SD values are still observed for

distance variations around � ¼ �90�. These values would

ultimately not have corresponded to significant errors in

the synthesized HRTFs, as they result from low levels in

the initial and target datasets for the contralateral side. In

the same panel, low CC values appear around 10 kHz. The

reason behind these inaccuracies is that the initial HRTFs

have an energy content that is relatively low in this

frequency region, as can be observed in Fig. 1(c). The

distance-varying filters rely on a simple model that

struggles to handle the head-model features in this

frequency region, such as the displacement of salient

features towards the interaural axis. In general, the human

head model used in this study can be considered to be valid

up to an average frequency of 16.6 kHz only. In effect,

according to the spatial sampling criterion of four elements

per wavelength � [15], the average cell length �
4
¼ 5:1 mm

limited the evaluations up to an average frequency of
c
� ¼ 16:6 kHz. Measures of overall accuracy, therefore,

provide reliable information for frequencies below this limit

only.

5.4. Synthesis Examples from Lower Angular Reso-

lutions

Two initial HRTF datasets at a radius r0 ¼ 150, for

angular resolutions of 3� (120 sources) and 10� (36

sources), were considered for the synthesis examples

shown in Fig. 14. A resolution of 3� allows for modal

representations up to n ¼ jmj ¼ 120
2
¼ 60, which corre-

spond to an angular bandwidth still comprising the required

initial information for an acceptable synthesis, as can be

verified in Figs. 5(a) and 7(a). As a consequence, the

results shown in the first row of Fig. 14 only differ slightly

from those shown in Figs. 10 and 11. A resolution of 10�,

on the other hand, allows for modal representations up to

n ¼ jmj ¼ 36
2
¼ 18, and correspondingly an angular band-

width comprising initial information up to around 8 kHz,

as can also be verified in Figs. 5(a) and 7(a). Results shown

in the second row of Fig. 14 are therefore expected to be

accurate only up to around 8 kHz. Interestingly, it is

verified therein that synthesis in spherical coordinates using

the MBT outperformed the other methods.

6. CONCLUSION

We have herein presented and evaluated a set of

horizontal-plane distance-varying filters (HP-DVFs) to

synthesize HRTFs at arbitrary distances on the horizontal

plane, once a dataset of HRTFs is known on a single circle

around the listener.

(a) Frequency-dependent threshold. (b) Magnitude-dependent threshold.

Fig. 13 Overall accuracies achieved with the proposed distance-varying filters in spherical coordinates. The angular
bandwidths of filters were limited according to the frequency-dependent threshold in (11) and proposed magnitude-
dependent threshold in (12). Overall accuracies were calculated using the spectral distortion (SD) in (13) and normalized
circular correlation (CC) in (14).
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The HP-DVFs stemmed from the solution of the

acoustic wave equation for sound fields that are assumed

to be invariant with respect to elevation angles in spherical

coordinates. Results were free of the lateral side disconti-

nuities that appear when sound fields are assumed to be

invariant along polar angles in interaural coordinates.

Moreover, to properly account for HRTF datasets obtained

for discrete distributions that limit the angular bandwidth,

we introduced a magnitude-dependent band-limiting

threshold (MBT) to restrict the action of distance-varying

filters to limited angular bandwidths.

We finally evaluated the performance numerically

using a model of a human head valid up to 16.6 kHz.

Results show that overall accuracies obtained with the

proposed HP-DVFs in spherical coordinates outperform the

existing distance-varying filters in interaural coordinates.

Furthermore, overall accuracies obtained with the proposed

MBT outperformed overall accuracies achieved with the

traditional frequency-dependent threshold, especially at

low frequencies and distances close to the head.

A perceptual evaluation of the HP-DVFs by means of

detectability of differences, and localization tests along

azimuth and distances, could provide more insight into the

validity of the suggested approach.
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