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1. Introduction
The feeling of immersion is an essential subject in the

virtual reality community, in which audio play a decisive role.
However, it is difficult to provide a persuasive spatial audio.
ADVISE (auditory display based on the virtual sphere model)
[1] aims to present the spatial audio using binaural displays
as an interface for listeners. It introduces a virtual sphere
of secondary sources to reproduce the generated sound fields
around the listener from computational results of the room
acoustics. Binaural signals are derived by driving signals for
the secondary sources and corresponding HRTFs. As for
computation of room acoustics, an efficient and accurate
method was proposed [2] based on decomposing a room in
to rectangular parts. In this letter, we concentrate on finding
the spherical harmonic representation of sound fields [3] in
rectangular space with respect to sound wave has a simpler
pattern than in an arbitrary space and the convenience of
spherical harmonic representation in reproducing the sound
field. We derived the representation by combining normal
modes in rectangular rooms with rigid boundaries [4] and
spherical harmonic expansion of the plane wave [3]. Numer-
ical experiments were conducted to validate the proposed
representation. While we focus on the representation of the
sound field inside a single rectangular element, the Adaptive
Rectangular Decomposition (ARD) can be used with our
results to render the whole sound field inside a room [2].

2. Rectangular sound field representation
Consider a 3D rectangular domain with its diagonal

extending from the ð0; 0; 0Þ to ðlx; ly; lzÞ and perfectly rigid,
reflective walls. The pressure field pðx; y; zÞ in the rectangular
space can be represented as follows [4]

pðx; y; zÞ ¼
X

�¼ð�x;�y;�zÞ
m���ðx; y; zÞ: ð1Þ

This equation is a triple sum over the modes for each
orthogonal axis with mode numbers �x, �y and �z. For brevity,
we use the symbol � as a shorthand for these three mode
numbers (i.e. to index each of the 3D rectangular domain
modes). m� are, therefore, rectangular mode coefficients and
�� are normal modes (the eigenfunctions of the Laplacian) for
a rectangular domain. Those modes are given by
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In the discrete interpretation, (1) is an inverse Discrete
Cosine Transform (iDCT) in 3D, with �� being the Cosine
basis vectors for the given dimensions [2]. Therefore, we
may efficiently transform from pressure values (P) to mode
coefficients (M) as

P ¼ iDCTðMÞ; M ¼ DCTðPÞ: ð3Þ

Thus, for any given sound field, the pressure distributions
can be represented by a rectangular mode coefficients matrix.

3. A mapping from rectangular representation to
spherical harmonic coefficients
As shown by Eq. (1), the desired field can be represented

by rectangular mode coefficients. Each mode is a product of
cosines. We apply the Euler formula to express each of the
cosines in Eq. (2) as the sum of two complex exponentials. A
complex exponential corresponds to a plane wave; therefore,
each cosine is the superposition of two plane waves traveling
in opposite directions. After carrying out the products and
simplifying common terms, �� becomes a summation of eight
complex exponential terms or plane waves, written as
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In the sound field reproduction system, the listener
position should be set at an arbitrary place in the room. To
reproduce the sound field around the listener, we place a
spherical coordinate taking the listener as the origin, as shown
in Fig. 1; we denote the center of the spherical coordinates by
O0 and denote the vector from O to O0 by d. Equating (1) and
(4), the desired field becomes:
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pðr; !Þ ¼
X
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m�ð!Þ �
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where r denotes an arbitrary position in the space.
The exponential terms in the above equation can be

interpreted as incident plane wave from eight different
directions. Note that these directions are taken with respect
to O0.

Considering that the spherical harmonic expansion of the
plane wave ejk�;‘r was formulated in [3], we write the pressure
distribution as follows:

pðr; !Þ ¼
X
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where i denotes the imaginary unit, jn denotes the sperical
Bessel function and k ¼ !

c
denotes the wavenumber.

Because pðr; !Þ can also be expressed as pðr; !Þ ¼P1
n¼0

Pn
m¼�n jnðkrÞPm

n ð!ÞYm
n ðr̂Þ. Harmonic coefficients Pm

n

are finally formulated as:

Pm
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�
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This equation maps a rectangular representation m� to a
spherical representation Pm

n , it can be interpreted as the re-
encoding of the field. In traditional approaches, Pm

n are
obtained by inverse spherical harmonic transformation:

Pm
n ð!Þ ¼
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However, when jnðkrÞ ¼ 0, Pm
n is undefined if the sound field

is observed at a fixed radius. Equation (7) avoids this problem
by observing sound field in the whole space.

4. Derivation of the driving signals
Among numerous approaches to calculate driving signals

for sound field reproduction systems [5,6], we simply apply
mode-matching approach to encoded sound field (refer [5] for
further details). In an auditory display based on the virtual
sphere model, these driving signals are combined with
appropriate HRTFs and summed to produce a binaural signal.

5. Numerical experiment
A 3D sound field reproduction experiment is conducted to

evaluate our proposal. We assume a 3 m� 3m� 3 m space
in free field in which a 1,000 Hz monopole source located at
ð1:5; 0�; 60�Þ (corresponding to ð2:25; 1:5ð1þ

ffiffiffi
3
p
Þ; 1:5Þ in the

Cartisian Coordinate), the space is discretized and sampled
every 0.1 m.

Figure 2 shows the pressure distribution of ideal field and
reproduced field on z ¼ 1:5 m plane. The expansion order is
n ¼ 15. Secondary sources (256 in total) are located on a 1 m
radius sphere, indicated by the dash circle. The distribution of
secondary sources corresponds to a minimum in the energy
for a repulsive Coulomb potential [7]. The normalized
reproduced error is depicted in Fig. 3, which is calculated
by 20 log10ðjpreproduced � pidealj � dnormÞ, where dnorm is the
distance between sample points and virtual source. The result
shows that the reproduced error is bounded below �36 dB
when the distance is less than 10 cm from the expansion
center and �25 dB when it is less than 20 cm. These error
levels, being comparable to what is observed in state-of-the-
art sound field reproduction systems based on spherical
harmonic representations, show that the main source of error
in the proposal is the use of a finite expansion order. Our
results show that reproduction error is as small as �36 dB
within a volume comparable to human head size. The
proposal may thus be useful as an architecture for future
virtual auditory displays.

Fig. 1 Coordinate diagram: a spherical coordinate
(shown by the dash circle) is located at position O0,
d denotes the displacement of two coordinates. Fig. 2 Ideal field of 1,000 Hz monopole source and

reproduced field with 256 radius 1 m of secondary
monopole sources.

Fig. 3 Reproduced Error: 20 log10ðjpreproduced � pidealj �
dnormÞ.
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